Follow Us :

Pharmaceutical Solutions through Blogs and Courses

Blog

By Dr. Pramod Kr. Pandey - May 2, 2025

Dr. Pramod Kr. Pandey is a distinguished Analytical Research Expert with over three decades of extensive experience in the pharmaceutical industry. He has contributed his expertise to both leading Indian and global pharmaceutical companies, consistently driving innovation and excellence in analytical research

Explore the importance of robustness in analytical method validation with practical guidance, a case study, and FAQs to help you perform the test effectively and efficiently

How To Perform Robustness In Analytical Method Validation

Robustness in Analytical Method Validation: Practical Insights, Case Study, and FAQs

Robustness in Analytical Method Validation is one of the most critical parameters, assessing the method’s ability to remain unaffected by small, deliberate variations in analytical conditions. While performing a robustness test requires both technical knowledge and significant time investment, understanding the right approach can simplify the process. In this article, I will share practical, skill-based knowledge supported by a real-life case study and address frequently asked questions to help you perform robustness testing more efficiently and confidently.

How To Perform Robustness In Analytical Method Validation: 7- Steps Strategies

The following are the 7- steps strategies to perform robustness:

  1. Step-1: Identify critical analytical variables of the analytical method ( e.g. pH, buffer concentration, solvent compositions, column-temperature, sample preparation procedures, etc. ) that are likely to influence the analysis result.
  2. Step-2: Define the variation range (lower limit and higher limit) for each analytical variables within which the experiment will be performed
  3. Step-3: Prepare the solutions and perform the robustness testing
  4. Step-4: Document the results with conclusion
  5. Step-5: Re-optimize the variation range (lower limit and higher limit) if robustness fails within the defined critical range
  6. Step-6: Perform the robustness test in the re-optimized range
  7. Step-7: Make the report and take approval of all concerned persons.

Related Topics:

Acceptance criteria for Robustness test

Acceptance criteria of robustness test is decided on system suitability test of the method.

Inject system suitability test (SST) solution in each robustness (change) condition and note down system suitability test result. Robustness condition must meet the SST acceptance criteria.

Case studies: Robustness Test

Robustness In Analytical Method Validation

Let us consider a drug substance D has the following specifications and we have to perform precision test:

  • Impurity A NMT: 0.20%
  • Impurity B NMT: 0.20%
  • Any unknown impurity NMT: 0.10%
  • Total impurity NMT 0.50%.

Sample concentration is 1.0 mg/ml. SST acceptance criteria is resolution (R) between main analyte peak D and impurity peak A should be ≥ 2.0 and following are the method chromatographic condition:

Column: C18, (150 x 4.6)mm, 5μm. Buffer 0.02M KH2PO4, pH 2.0 with 10 Phosphoric acid solution. Mobile phase is the mixture of buffer and acetonitrile in in ratio of 60:40. Flow rate of mobile phase is 1.0 ml/minute. Column temperature is 30oC, Injection volume is 20μl and detector wavelength is 254 nm.

Let us define the critical analytical variables and perform the robustness test.

For example pH may be changed 2.5 and 3.0 from 2.5 (±0,2). Flow rate may be changed 0.9 and 1.0 from 1.0 ml/minute and similarly other analytical variables can also be defined as in table-1

Table-1

S.NRobustness
parameters
NominalLevel (-1)Level(+1)
1pH2.72.53.0
2Flow rate (ml/minute)10.91.0
3Column temp30oC25oC35oC
4KH2PO4
concentration
0.02M0.01M0.03M
5Mobile phase composition
(Buffer : ACN)
60:4057:4363:37
6ColumnMake XMake YMake Z
Table showering robustness variables

Table-2

The following are the SST- Resolution between Main Analyte peak D and Impurity peak A in in different change conditions:

S.NRobustness
Parameters
Resolution (R)
Nominal
Resolution (R)
Level (-1)
Resolution (R)
Level(+1)
1pH3.13.55
2Flow rate (ml/minute)3.23.63.5
3Column temp3.43.65
4Buffer concentration3.644
5Mobile phase composition
(Buffer : ACN
2.82.52.9
5Column, make X, Y and Z4.23.74.1
Table showering SST acceptance criteria in different robustness conditions

Resolution R ≥ 2.0, at each lower level and a higher level of above analytical change variables and hence, analysis can be performed in that range.

Conclusion

Robustness testing is the critical step but very important in any AMV test. It assesses the analytical method’s capability to produce consistence and reliable result under extreme conditions. Now I hope this article has cleared all your doubts and now you can independently perform robustness testing during method development and method validation. For any opinion or suggestions related to this article, you can write in the comment section. For any further assistance you can contact me using contact form.

You may also want to check out other articles on my blog, such as:

References

Abbreviations

  • R: Resolution
  • SST: system suitability test

FAQs: Top interview questions on Robustness

How robustness is performed?

Identify critical analytical variables of the method ( e.g. pH, buffer concentration, solvent compositions, column-temperature, sample preparation procedures, etc. ) that are likely to influence the result. define the two extreme variable range. Inject the system suitability solution. Method must meet SST acceptance criteria in change condition. If fails then re-optimize the condition and perform the analysis in the modified condition.

what is robustness in method validation

Robustness in method validation assessing the method’s ability to remain unaffected by small, deliberate variations in analytical conditions.

Disclaimer: The numerical data used in the tables or calculations are not actual data. It is designed to explain the topic.

About Dr Pramod Kumar Pandey
Dr. Pramod Kr. Pandey

Dr. Pramod Kr. Pandey is a distinguished Analytical Research Expert with over three decades of extensive experience in the pharmaceutical industry. He has contributed his expertise to both leading Indian and global pharmaceutical companies, consistently driving innovation and excellence in analytical research

Subscribe to Stay Informed with the Latest Industry Insights!

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!
×