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1.1 INTRODUCTION 

Hydrophobic Interaction Chromatography (HIC) is widely used for separation of pro-
teins in both small- and large-scale applications. It is often employed in downstream 
processing for intermediate purifcation and in the polishing stage to complement 
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2 Advances in Chromatography 

other chromatography techniques, such as ion-exchange chromatography and affn-
ity chromatography. 

The advantage of HIC is that it can be realized under mild conditions with respect 
to pH, temperature, and solvent environment. HIC is an entropically driven process 
involving interactions between hydrophobic adsorbent surfaces and hydrophobic 
fragments of protein molecules. The proteins are separated based on differences in 
their hydrophobicity. Protein binding is promoted by the presence of a kosmotropic 
salt, such as ammonium sulfate (AS), which increases the surface tension of the liquid 
solution and destroys the structure of the water shell hydrating hydrophobic patches 
on the protein surface [1–5]. The protein release from the adsorbed phase and its elu-
tion are imposed by a decrease in the salt concentration, which causes gradual weak-
ening of hydrophobic interactions between the adsorbent surface and the proteins. 

Since the salt concentration is a primary process variable used to alter the separa-
tion effciency, HIC is easier to establish compared with ion-exchange chromatogra-
phy, where protein binding and elution are also affected by pH. This also holds true 
for comparison with multimodal chromatography, whose effciency is additionally 
altered by the type of ligand and its density. This requires additional effort to deter-
mine the operating window and optimize the process performance. 

HIC is particularly effcient for isolation of targeted therapeutic protein from its 
aggregated forms; for example, it is applied in the purifcation of monoclonal anti-
bodies (mAbs) for removal of aggregates [6–8]. It is also effcient for purifcation 
of plasmids and removal of bound endotoxin [9–11]. Recently, HIC has gained new 
areas of interest, such as the manufacture of antibody–drug conjugates (ADCs) and 
co-formulated mAbs. ADCs, which are destined for targeted therapies, consist of 
small-molecule drugs conjugated to large-molecule highly hydrophobic mAbs. The 
components with different degrees of conjugation differ in hydrophobicity; therefore, 
the HIC step can be employed for their effcient separation as well as adjustment of 
the drug-to-antibody ratio [12–15]. Co-formulated mAbs are composed of two mAbs 
destined for synergistic targeting to multiple sites of action. HIC has been reported to 
be effective in the quantitation of individual mAbs in co-formulated mAbs [16,17]. 

The development of a robust separation process cannot be accomplished with-
out understanding the mechanism of protein binding and elution (i.e., underlying 
thermodynamic and kinetic effects) along with their dependencies on the operating 
variables. The thermodynamic nature of HIC has been investigated in several studies 
in which mechanistic isotherms were developed [18,19] and the infuence of salt on 
HIC retention, capacity factors, and water release were quantifed [3,20–26]. 

Nevertheless, the complexity of protein behavior and the specifcity of their adsorp-
tion mean that molecular dynamic models cannot provide general conclusions con-
cerning patterns of protein binding and elution. The adsorption behavior typically 
assigned to “hydrophobic interactions” arises from a complex combination of long-
range non-hydrophobic and short-range hydrophobic interactions [27,28]. The process 
thermodynamics become even more complex for multicomponent mixtures when they 
involve either competitive or synergistic adsorption effects or a combination of them 
[29]. This particularly holds true for adsorption of mixtures of proteins of quite varied 
sizes, which induces size exclusion effects. In such cases, to quantify the adsorption 
behavior, more advanced models that account for these phenomena are required. 



 

  

    

 

3 Kinetic and Thermodynamic Aspects of HIC 

Furthermore, the dynamics of protein chromatography are often determined 
by kinetic effects arising from mass transfer limitations and slow rates of process 
occurring at the solid–liquid interface, including steric hindrances in porous adsor-
bents [30–32], slow binding, or conformational changes upon adsorption [33–36]. 
The latter is a cause of protein unfolding and aggregation, which manifests in elu-
tion of multiple peaks of different retentions (e.g., [35,36]). The occurrence of that 
phenomenon is detrimental for the separation effciency and often causes strongly 
hydrophobic HIC resins to be reluctantly used for processing structurally unstable 
proteins, despite the high selectivity of the separation [37]. 

Furthermore, a high concentration of kosmotropic salt used for protein binding 
limits protein solubility in the loading buffers. Therefore, the loading concentration 
of the protein is often low, which reduces process throughput. 

Nevertheless, by proper selection of the operating conditions, the separation can 
be realized with high yield and purity, while undesirable effects are avoided and the 
biological activity of the protein is preserved. It cannot be done without recognizing 
the pitfalls and understanding their origins. 

In this chapter, we describe the different thermodynamic and kinetic effects that 
can accompany HIC separation and cause misinterpretation of the retention data and 
failure in the process design, including protein conformational changes, multicom-
ponent adsorption, solubility limitations, and thermal heterogeneity of the column in 
thermally mediated separations. We also provide an elucidation of the mechanisms 
underlying these effects or the hypothesis of their occurrence. 

1.2 PROTEIN BEHAVIOR IN THE ADSORBED PHASE 

1.2.1 Conformational Changes—DeteCtion of the Phenomenon 

A prerequisite for effcient design of HIC separation is identifcation and quantif-
cation of the process conditions that potentially trigger yield losses due to protein 
unfolding upon adsorption. To detect this phenomenon, various analytical meth-
ods have been employed: circular dichroism, fuorescence, infrared spectroscopy 
[33,38–41], isothermal titration calorimetry [37,42,43], and hydrogen exchange (e.g., 
[44–48]). These methods provided insight into the mechanism of protein confor-
mational changes at the absorbent surface as well as a basis for the formulation of 
mechanistic models describing that phenomenon. However, they involve complex 
and time-consuming measurement procedures that are not suitable for high-throughput 
screening of the process conditions in downstream processing. For fast identifca-
tion of the destabilization of proteins on HIC resins, nano-Differential Scanning 
Fluorimetry (nanoDSF) can be exploited [49]. In this method, the stability of the 
protein is determined by the so-called melting temperature, which corresponds to 
the midpoint of the transition from folded to unfolded forms of the protein or its 
specifc domains. To determine the unfolding transition points, the shifts of intrinsic 
tryptophan fuorescence at emission wavelengths of 330 nm and 350 nm over the 
course of temperature gradients are recorded [50]. A protein-specifc low critical 
melting temperature can be identifed and used as an indicator of destabilization of 
protein structure in both liquid and adsorbed phases [49,51]. This approach allows 
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FIGURE 1.1 Changes in the melting temperature of the protein in the liquid solution and 
adsorbed on a Butyl Sepharose resin recorded using nanoDSF. A) BSA at different salt con-

−1centrations in the loading buffer, Csalt, at constant protein load on the resin, i.e., 3 mg gresin, 
B) BSA at different protein loads at constant Csalt, C) a-La at different protein loads. 

From: R. Muca, M. Żurawski, W. Piątkowski, D. Antos, J. Chromatogr. A, 1492 (2017), 79–88 [49]. 

simultaneous detection of melting temperatures for a large number of small samples; 
therefore, it can be applied in the development stage of the chromatographic process. 
Furthermore, this method does not require a dye for protein staining. This is particu-
larly important for HIC resins, which, due to their hydrophobic properties, are prone 
to interacting with dyes. Figure 1.1 illustrates the changes in the fuorescence ratio at 
the wavelengths of 330 nm and 350 nm versus temperature for bovine serum albumin 
(BSA) and α-Lactalbumin (α-La) dissolved in liquid phase as well as adsorbed on an 
HIC resin under different conditions. Both BSA and α-La were reported to be prone 
to unfolding upon adsorption on HIC media [3,34,37,43,47,52]. The maximum of the 
curves corresponds to the melting temperature of the proteins. It can be observed 
that an increase in salt concentrations, which enhances the strength of hydrophobic 
interactions, causes a signifcant reduction in the melting temperature (Figure 1.1A). 
The opposite effect is induced by increasing loading concentrations, which causes 
stabilization of the protein in the adsorbed phase (Figures 1.1B and 1.1C). For both 
proteins, the low critical temperature was about 40°C, and the loading conditions 
that corresponded to the melting temperature below that value triggered multi-peak 
elution in the chromatographic process [49]. 

1.2.2 Conformational Changes—meChanistiC moDels 

To quantify the phenomenon of protein unfolding on HIC media, several mechanis-
tic models have been developed. Xiao et al. [52] and Deitcher et al. [53] used a four-
state model that assumed reversible conformation change and reversible adsorption 
of proteins. Three-state models were used by Lundström [54] and Heimer et al. [34]. 
A three-state reversible unfolding model was also used to reproduce the chromato-
graphic band profles of proteins on HIC media under linear or non-linear isotherm 
conditions [29,31,49,55–58]. 

A pictorial representation of these models is shown in Figure 1.2. In the four-state 
model, the protein can unfold and refold in both the liquid and adsorbed phases 
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through a sequence of reversible reaction steps (steps 1–4, Figure 1.2A). The ratios 
of the rate constants of forward and backward reactions determine the preferable 
paths of the process and the concentration of different protein forms in the liquid 
and adsorbed phases. However, the unfolded form in the liquid phase is often sus-
ceptible to aggregate, which is illustrated by two additional states of the adsorption 
mechanism assigned to the aggregate formation and its subsequent adsorption (steps 5, 
6, Figure 1.2B). It may induce the previously mentioned multiple-peak elution, where 
different proteins form (i.e., native, refolded, and aggregated), elute with different 
retention times. When the desorption rate of the unfolded protein, which is usually 
strongly bound, is infnitely slow, the four-state model converts to the three-state 
model. Figure 1.2C illustrates a three-state model in which unfolding of the protein 
is assumed to occur in a sequence of intermediate stages of binding the protein to an 
active site, followed by its anchoring and spreading due to interactions of the adsorbed 
molecule with neighboring adsorption sites [36,49,54]. In this model, the unfolded 
protein can be desorbed only through the backward reaction in the sequence of the 
unfolding–refolding and adsorption–desorption processes. When the refolding rate is 
infnitely slow, the unfolding reaction path becomes irreversible. 

As mentioned in Section 1.2.1, the unfolding phenomenon is expected to diminish 
with increasing protein loading on the resin. This stems from the “crowding” effect, 
where the presence of molecules of proteins on the adsorbent surface reduces their 
accessibility to adsorption sites and, therefore, their ability to spread and unfold 
[36,49,59]. A representation of this mechanism is shown in Figure 1.2D. 

The reaction scheme for the simplest free-state mechanism (Figure 1.2C) can be 
expressed by Eqs. 1.1 and 1.2. In this scheme, the protein i, Pi, is reversibly bound to 
a single adsorption site, S*, forming a surface complex P̄̄ 

n,i S* on bare adsorbent sur-
face according to the second-order Langmuir-type reaction kinetics with adsorption 
and desorption rate constants ka,i and kd,i [29,36,49]: 

k* a i, *°°P S+ ° ˛  P S (1.1) i °° n i˝ °  ,kd i, 

where: P̄̄ 
n,i is the adsorbed protein i in the native form. 

The second step (2) is induced by the interaction of the protein with a neighboring 
active site. To describe a two-site interaction (Figure 1.1C), a second-order reaction 
scheme can be used: 

k
u i,* * *°°P S +S ° ˛P S (1.2) n i, ˝ °°° u i, 2kf i, 

where: ku,i, kf,i are the kinetic coeffcients of protein unfolding and folding, P̄̄ 
u,i, 

denotes the protein in the adsorbed phase in the unfolded form. 

1.2.3 Cluster formation 

At a high protein concentration in the adsorbed phase, another surface reaction is 
suggested to be active when the adsorbed proteins provide additional interaction 
sites [29, 60–62]. To describe this phenomenon, Chatelier, and Minton [60,61] 
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developed kinetic models of positive cooperative protein adsorption. Positive coop-
erative adsorption, also termed synergistic adsorption, can be induced by attractive 
intermolecular interactions that lead to the formation of protein clusters on the adsor-
bent surface [60–62]. Positive cooperative adsorption is assumed to occur due to 
multilayer and preferred adsorption. In the case of multilayer adsorption, the mole-
cules of proteins present in the adsorbed phase provide additional adsorption sites on 
their own molecular surface, whereas in the case of preferred adsorption, the protein 
molecules already present in the adsorbed phase promote or activate adsorption of 
other molecules on adjacent adsorption sites on the adsorbent surface without direct 
contact. The positive cooperative adsorption can be described by a simplified reac-
tion scheme with adsorption and desorption rate constants kac and kdc, as illustrated 
in Figure 1.2E [29]. When the desorption rate is very slow, the positive cooperative 
adsorption leads to irreversible formation of aggregates in the adsorbed phase.

A mechanism of the interactions between the i-th protein and adsorbed molecules 
of proteins present in the multicomponent solution can be described as follows:

 P P Pn i k j c k ij

k

k
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, ,
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FIGURE 1.2 Cartoon representation of the unfolding models. A) Steps (1),(2),(3),(4) illus-
trate a four-state unfolding model of reversible reactions of binding of the native form, unfold-
ing in adsorbed phase, binding of the unfolded form, unfolding in liquid phase, B) additional 
steps (5), (6) correspond to aggregation and binding of aggregates, respectively, C) three-state 
mechanism: (1) binding of the native form, (2) spreading on the surface by binding to another 
adsorption site with simultaneous unfolding, D) crowding effect: inhibition of unfolding in 
the presence of other molecules in the adsorbed phase, E) positive cooperative adsorption: 
(3a) multilayer adsorption, (3b) preferred adsorption.
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where P̄̄ 
c,k,ij denotes the protein i adsorbed due to the interactions with bound mol-

ecules of the same protein when j = i or with bound molecules of a different protein 
when j ≠ i, in the native form k = n or the unfolded form k = u, kac,k,ij, kdc,k,ij is the cor-
responding rate constant describing positive cooperative adsorption and desorption, 
N is the number of the proteins in the solution. 

1.2.4 moDel of aDsorPtion KinetiCs 

The reaction paths presented above can be quantifed by kinetic equations that 
account for the phenomena described above [29]. 

For the adsorbed phase concentration of the protein Pn,i in the native state, qn,i, it 
holds: 

-qn i, [ ∞ ] -qu i,= kd i,   [|
Ka i ,  C q  ( −E jE l 

d l ij, ql j )  − q , ]| 
  −i   , n i  (1.4)-t -t 

For the adsorbed phase concentration of the protein Pu,i in the unfolded state, qu,i: 

-qu i, [ ∞ ]= k , Ku i  qn i,   (q −E E d   q ,   ) −  qu i,f i   , l l i j l j, (1.5)-t [| j ]| 

For positive cooperative adsorption of the protein Pc,i: 

-qnc,i = E  E k [K  C q   -  q ] (1.6)j k dc k ij, ,  [ ac k  ij   i k ij, c k i ], ,  , ,-t 

For the total protein concentration in the adsorbed phase, qtot,i: 

q =  q  + q + qtot i, n i, u i, nc i, (1.7) 

-qtot i, -qn i, -qu i, -qnc i,=   + + (1.8)
-t -t -t -t 

i = 1..N, j = 1..N, k = n, u, l = n, u, c 
In these equations, Ci, qi are the liquid and adsorbed phase concentrations of the 

protein i respectively, in the native n, unfolded, u, and in clustered form, c, q∞ is the 
binding capacity, δl,ij, are the exclusion factors for the native form, l = n, the unfolded 
form, l = u, and the clustered form l = c of the protein, respectively. For j = i, δl,ij 

account for exclusion effects induced by the presence of all adsorbed molecules of 
the same protein. For j ≠ i, δl,ij account for the same effects but with respect to dif-

k k ka i,   u i,   ac, ,k ij  
ferent adsorbed proteins. The parameters: K =  , K =   , K = a i,   u i,   ac, ,k ij  k k kd i   f i,   , ,, dc k ij 
are the equilibrium constants for adsorption on the bare surface, for unfolding, and 
for positive cooperative adsorption due to the interaction with the native form, k = n, 
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and the unfolded form, k = u, respectively. The kinetic model can be simplified by 
eliminating some of its terms or unifying some of the model coefficients [49].

If Kac,k,ij = 0 and gk,ii = gk,ij, Eqs. 1.4–1.8 are reduced to the multicomponent Langmuir 
competitive isotherm. Values of gk,ij > gk,ii indicate negative deviations from the com-
petitive Langmuir isotherm (i.e., negative cooperative adsorption effects), which can 
be attributed to size exclusion, repulsive interactions, or both [60–62]. The values of 
Kac,k,ij > 0 indicate positive cooperative adsorption effects induced by the presence of 
proteins in the adsorbed phase. Positive cooperative adsorption corresponds to iso-
therms with a higher slope relative to a reference Langmuir isotherm, while negative 
cooperative adsorption corresponds to isotherms with a lower slope.

At low surface loadings, the effects of cooperative adsorption become negligible 
for both single and multicomponent systems, and Eqs. 1.4–1.8 reduce to the follow-
ing equations:

 
∂

∂
= −|| || −

∂

∂

q

t
k H C q

q

t
n i

d i a i i n i
u i,

, , ,
,         (1.9)

 
∂

∂
= −|| ||

q

t
k H q qu i

f i u i n i u i
,

, , , ,        (1.10)

where H K qa i a i, ,  = oo, H K qu i u i, ,  = oo are the slopes of the isotherm (the Henry con-
stants) for the native and unfolded forms, respectively.

At steady state, an explicit form of the isotherm equation can be derived from Eqs. 
1.9 and 1.10:

 q H H C H Ctot i a i u i i tot i i, , , ,= +( ) =1  (1.11)

where qtot,i is the total protein concentration in the adsorbed phase, H H Htot i a i u i, , ,= +( )1
H H Htot i a i u i, , ,= +( )1  is the total Henry constant that corresponds to the total isotherm slope that 

is correlated with the retention factor.

1.2.5  thermoDynamiC DePenDenCies of aDsorPtion on hiC meDia

To correlate the Henry constant, H, with the salt concentration, several retention 
dependencies have been suggested, which typically have a form of logarithmic func-
tions [1–4, 63–70]:

 logH AC Bsalt= +  (1.12)

where A and B are parameters, which have a physical meaning.
At a sufficiently high salt concentration, the logarithmic dependence of the reten-

tion factor on the salt concentration is linear. However, to quantify retention behavior 
in a wide range of salt concentrations, more sophisticated multi-parameter retention 
models have to be used [3, 4, 18–26, 63–70]. For practical purposes, an empirical 
function, H = f(Csalt), may be employed, whose coefficients are fitted to the retention 
data acquired experimentally.
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The retention properties of proteins are strongly altered by temperature. In gen-
eral, increasing temperature enhances hydrophobic interactions and protein retention, 
and lowering temperature promotes protein elution [29,49,67–73]. The temperature 
dependence of the Henry constant is determined by the van’t Hoff plot: 

lnH = −˛G0 / RT (1.13) 

0 0 0where ˜G0 is Gibbs three energy ˜G = ˜ + T S , R is the gas constant, and T isH ˜ 
the absolute temperature. 

0Eq. (1.13) represents a linear relationship lnH vs 1/T, provided that ˜H 0 and ˜T S  
do not depend on temperature. If heat capacity changes with temperature, which may 
accompany conformational changes of proteins in the adsorbed phase, the quadratic 
dependence can be applied [37,42,43,69–73]: 

b c
lnH a  

2 (1.14) = +  + 
T T 

Although the effect of temperature on the adsorption properties of proteins in 
HIC may be complicated, this parameter can be used to promote elution and sepa-
ration of proteins under mild conditions without denaturation and to improve the 
effciency of the separation process [72,74,75]. 

1.3 COLUMN DYNAMICS 

To predict the course of chromatographic elution, the underlying kinetic equations 
must be implemented in a dynamic model. For that purpose, a heterogeneous dynamic 
model (i.e., a general linear rate model) can be used, which directly accounts for 
extra- and intra-particle mass transport resistances. Since the model contains a num-
ber of parameters to be determined and requires an advanced numerical method for 
solving, it is often replaced with pseudo-homogeneous models, such as the kinetic-
dispersive model, which is expressed as follows [43,55–58,76]: 

2°Ci °Ci °qtot i, ° Ci˜ +u + −˜ (1.15) 
t i, (1 t ) = DL a,°t °x °t °x2 

where Ci is the concentration of each protein i in the mobile phase, qtot,i is the total 
adsorbed concentration of each protein i related to the solid matrix volume, u is the 
superfcial velocity in m s-1, t is time in s, x is the axial coordinate, DL,a is the effec-
tive axial dispersion coeffcient in m2 s-1, and ɛt,i, ɛt are the bed porosity accessible by 
each protein and the total bed porosity, respectively. For small molecules such as salt 
ions, which penetrate the whole pore volume of the bed, ˜ = ˜ .t i, t

∂qtot i,The term  is expressed by the underlying kinetic equations (e.g., the model 
∂t 

described by Eqs. 1.1–1.8). However, it should be kept in mind that the rate constants 
ka,i and kd,i lump kinetic limitations arising from the adsorption-desorption process 
as well as from diffusional mass transfer [49,76,77]. 
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The model must be coupled with standard initial and boundary conditions and 
solved using a numerical procedure (e.g., [49,75]). 

1.4 ELUTION BEHAVIOR UNDER LINEAR 
ISOTHERM CONDITIONS 

1.4.1 elution of struCturally stable Proteins 

A pattern of isocratic elution on an HIC medium, which is typical for structurally sta-
ble proteins, is shown in Figure 1.3A. An increase in kosmotropic salt concentration 
and temperature enhances the binding of the protein to HIC resins, which results in 
an increase in the Henry constant and thus in retention time. This is accompanied by 
band broadening due to slow rates of diffusional mass transport and the adsorption-
desorption process. To accelerate the elution progress and mitigate kinetic effects, 
gradient elution is usually applied to reduce band broadening, where the elution 
strength of the mobile phase is enhanced by a gradual or stepwise reduction in the 
salt concentration (Figure 1.3B). 

Illustrations of the underlying retention dependencies are shown in Figures 1.4A 
and 1.4B. They follow typical trends that were described in section 1.2.5: the depen-
dency lnH vs Csalt is linear at higher salt concentrations, and the dependency lnH vs 
1/T is linear over the range of mild temperature conditions, i.e., 5–25°C. 

1.4.2 elution of struCturally unstable Proteins 

The retention of structurally unstable proteins that unfold upon adsorption may 
involve multipeak elution in the gradient mode and incomplete elution of the protein 
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FIGURE 1.3 Illustration of elution pattern of LYS on 4FF Butyl Sepharose, the injection 
concentration Cinj = 0.069 μmol mL-1 (1 mg mL-1), the injection volume Vinj = 0.1 mL, and 
the mobile phase fow rate Q = 1 mL min-1. A) Isocratic band profles of LYS at different salt 
concentrations and temperatures, B) gradient elution, linear gradient 0–1.7 M AS, Csalt, in 10 
column volumes (CV) at 250C. 

A from: R. Muca, W. Marek, W. Piątkowski, D. Antos, J. Chromatogr. A, 1217 (2010), 2812–2820 [55]. 

B from: R. Muca, W. Piątkowski, D. Antos, J. Chromatogr. A, 1216 (2009), 8712–8721 [74]. Symbols— 
experimental data, lines—model simulations. 
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tures, B) dependency of lnH on 1/T at different salt concentrations. Lines are a guide for the eye. 

From: R. Muca, W. Marek, W. Piątkowski, D. Antos, J. Chromatogr. A, 1217 (2010), 2812–2820 [55]. 
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FIGURE 1.5 Elution pattern of BSA and a-La, fow rate Q = 1 mL min-1, Vinj = 0.1 mL, 
CBSA,inj = 0.015 μmol mL-1 (1 mg mL-1), Cα‑La,inj = 0.35 μmol mL-1 (5 mg mL-1). A) Illustration 
of band splitting of the BSA profles in salt gradient elution, B) effect of the salt concentra-
tion, Csalt, and temperature on partial elution of BSA in isocratic mode, C) effect of the salt 
concentration on partial elution of α-La. 

From: R. Muca, M. Żurawski, W. Piątkowski, D. Antos, J. Chromatogr. A, 1492 (2017), 79–88 [49] and 
from: R. Muca, W.K. Marek, W. Piątkowski, D. Antos, J. Chromatogr. A 1217 (2010) 2812–2820 [55]. 

in isocratic mode. In the gradient mode, the earlier eluting peak is assigned to native 
or predominantly native proteins, whereas the more retained is assigned to partially 
unfolded proteins. In the isocratic mode, only an earlier-eluting peak appears at the 
column outlet; the remaining amount of the protein retains in the column until the 
salt content in the mobile phase is reduced. For low protein loads corresponding to 
the linear isotherm range, the extent of incomplete elution or peak-splitting phenom-
ena depends on the salt concentration in the mobile phase, the temperature, and the 
mobile phase fow rate. 

Figure 1.5 demonstrates the infuence of the salt concentration and temperature on 
the elution behavior of BSA and α-La, which as mentioned above, are representatives 

0
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FIGURE 1.6 Variations of the Henry constant H of BSA vs. the salt concentration and 
temperature. A) Dependency of lnHa vs Csalt at different temperatures, and B) lnHa vs 1/T at 
different salt concentrations, C) dependency lnHu vs Csalt and D) dependency lnH vs 1/T. 
Lines are a guide for the eye. 

From: R. Muca, W. Marek, W. Piątkowski, D. Antos, J. Chromatogr. A, 1217 (2010), 2812–2820 [55]. 

of proteins with unstable structures. In Figure 1.5A, a two-peak elution of BSA in 
gradient mode is shown, where the frst peak was assigned to the protein that was 
both adsorbed and desorbed in the native form, whereas the second one was assigned 
to the protein that unfolded upon adsorption and desorbed in the native form, accord-
ing to the three-point mechanism illustrated in Figure 1.2C. This effect is enhanced 
with increasing salt concentration and thus the binding strength of the protein, which 
manifests itself by reducing the amount of the protein eluted in the frst peak. This is 
demonstrated in Figures 1.5B and 1.5C, in which the frst-eluted peaks recorded at 
different salt concentrations are superimposed. Similarly, an increase in temperature 
induces a reduction in the size of the fst-eluting peak (Figure 1.5B). 

Such a retention pattern refects the salt and temperature retention dependencies 
whose courses depart from the typical pattern reported previously. Figure 1.6 presents 
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hypothetical salt and temperature dependences of the Henry constants (Ha, Hu) of BSA 
for adsorption-desorption and unfolding-folding processes under linear isotherm con-
ditions. The dependences were assessed using the peak ftting method, in which the 
dynamic model parameters were adjusted to reproduce partial elution profles of the pro-
teins. Both the salt and temperature dependences of lnHa and lnHu deviate from linearity. 

1.5 ELUTION BEHAVIOR UNDER NON-LINEAR 
ISOTHERM CONDITIONS 

1.5.1 elution of struCturally stable Proteins 

An increase in the protein load up to non-linear isotherm conditions usually 
results in enhancement of peak asymmetry, that is, formation of a fast-moving 
sharp concentration front followed by peak tailing, which is characteristic of the 
Langmuirian type of adsorption mechanism. A typical pattern of changes in peak 
shape with increasing protein load in isocratic elution mode is illustrated for a model 
protein, LYS, in Figure 1.7A. The presence of other adsorbing compounds induces 
the displacement effect, which causes the protein to accelerate its migration along the 
column. Figure 1.7B illustrates changes in the retention of LYS in a binary mixture 
with polyethylene glycol (PEG 3.3 kDa). The molar concentration of PEG is much 
higher than that of LYS, which stems from the differences in their molecular weights 
and sizes. This causes PEG, which itself is weakly adsorbed on HIC media, to dis-
place LYS and reduce its retention [78]. This implies that the size exclusion effect 
strongly contributes to the mechanism of multicomponent adsorption. 

The shape of the band profles of structurally unstable proteins differs from 
the common pattern. An increase in the protein load induces the crowding effect 

FIGURE 1.7 Illustration of changes in shape of band profles of LYS on an HIC resin, Q = 
1mL min-1, A) at different protein loading volumes, Cinj = 0.382 µmol mL-1 (5.5 mg/mL-1), 
B) in the presence of PEG 3.35 kDa, Csalt = 1.19 M, Cinj,LYS = 0.069 µmol mL-1 (1 mg mL-1), 
CPEG in the sample or in both of the samples in the eluent CPEG = 0.59 µmol mL-1 (2 mg mL−1). 

A from: I. Poplewska, W. Piątkowski, D. Antos, J. Chromatogr. A. 1386 (2015)] 1–12 [79]. 

B from: W.K. Marek, W. Piątkowski, D. Antos, Chromatographia 81 (2018)1641–1648 [78]. 
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FIGURE 1.8 Effect of protein load and fow rate on the retention behavior of BSA and α-La. 
The percentage amount denotes the ratio of the mass of the protein eluted to the mass loaded

−1into the column. A) BSA, 59% corresponds to the load 2.9 mg mLresin, 41% and 38% corre-
−1spond to the same protein load of 0.36 mg mLresin but at different fow rates, B) α-La, 79% for 

−1 −1the protein load of 7.3 mg mLresin, 41% and 32% for the protein load of 0.36 mg mLresin but 
at different fow rates. 

From: R. Muca, M. Żurawski, W. Piątkowski, D. Antos, J. Chromatogr. A, 1492 (2017) [55]. 

mentioned earlier, in which the presence of the adsorbed molecules prevents the 
protein from spreading and unfolding. Therefore, at high protein loadings, protein 
unfolding is inhibited and the native form of the protein prevails in the adsorbed 
phase. The infuence of the protein load on the extent of incomplete elution is dem-
onstrated in Figure 1.8. Yet, when unfolding is accompanied by aggregation in the 
liquid or adsorbed phase (Figure 1.2A stages 5, 6 or Figure 1.2E), an increase in the 
protein load may cause contradictory effects: on the one hand, it can diminish for-
mation of the unfolded form and its subsequent aggregation, but on the other hand, 
it can enhance aggregation, which is a higher-order reaction, thus accelerating with 
increasing protein concentration. 

The extent of the incomplete elution effect also depends on the mobile phase fow 
rate, which is also demonstrated in Figures 1.8A and 1.8B. As the rate of the unfold-
ing process is low [36,41], reduction in the mobile phase fow rate, thus increasing 
the contact time of the protein with the adsorbed surface, favors formation of the 
unfolded form. 

1.5.2 elution of struCturally unstable Proteins 

The presence of other proteins in the adsorbed phase also induces the crowding 
effect, which is illustrated in Figure 1.9, where the isocratic elution profles of binary 
mixtures of BSA and LYS, and BSA and α-La are shown. The incomplete elution 
of BSA, which results from the protein unfolding, is diminished in the presence 
of smaller proteins (i.e., LYS) and α-La. In both cases, the elution of the smaller 
protein was almost unaffected by the presence of BSA. This confrms that the size 
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exclusion effect exerts a dominant influence on the mechanism of multicomponent 
adsorption.

1.5.3  aDsorPtion equilibrium: isotherm Courses

The isotherm course of proteins adsorbed on HIC media reflects the underlying 
adsorption mechanism; therefore, it can be affected by unfolding and positive and 
negative cooperative adsorption. Examples of the isotherm shapes measured for dif-
ferent proteins on HIC resins using static and dynamic methods are shown in Figures 
1.10 and 1.11.

In the static method, the resin slurry stayed connected with the protein solutions 
until adsorption equilibrium was established. The equilibrium data were exploited to 
determine the thermodynamic coefficients of the adsorption model. In the dynamic 
method, the thermodynamic coefficients were adjusted by fitting predictions by the 
dynamic model to the experimental peaks recorded for different loading conditions. 
The resins used for acquiring the data differed in the pore size and the matrix struc-
ture, that is, 4FF Butyl Sepharose (BS) with a pore size of 30 nm based on agarose 
matrix and TOYOPEARL Butyl-650C (TP) with a pore size of 100 nm based on 
methacrylic polymer. The ranges of molar concentrations selected for the isotherms 
are relevant to the chromatographic band profiles presented above.

For all static measurements presented in Figure 1.10, a continuous increase in the 
adsorbed protein concentration with increasing liquid phase concentration can be 
observed. The isotherm follows the course of favorable isotherms with a decreasing 
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FIGURE 1.9 Elution patterns of BSA in binary mixtures with LYS and a-La on the BS resin 
at Csalt = 0.765 M AS, on the BS resin. A) Upper plot—single LYS and LYS in a binary mix-
ture with BSA, lower plot—single BSA, and BSA in a binary mixture BSA-LYZ, Cinj,BSA =  
16 x 10-3 umol mL-1 (1.1 mg mL-1), Cinj,LYZ = 217 × 10-3 umol mL-1 (3.1 mg mL-1), Vinj = 2 mL 
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nent samples, Cinj,BSA = 15 × 10-3 mmol mL-1 (1.0 mg mL-1), Cinj,LAC = 70.5 × 10-3 umol mL-1 
(1.0 mg mL-1), Vinj = 2 mL.

From R. Muca, M. Kołodziej, W. Piątkowski, G. Carta, D. Antos, J. Chromatogr. A, 1625 (2020) 461309 
[29].
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slope as the protein concentration increases. Adsorption capacity is enhanced with 
increasing salt concentration, as exemplifed in Figures 1.10C and 1.10D. Similar 
adsorption behavior of proteins on HIC media has been indicated in several studies 
[25, 29, 49, 80–82]. 

Furthermore, all curves exhibited convex and nonlinear curvature in a wide con-
centration range. In the case of proteins whose structure underwent conformational 
changes upon adsorption (e.g., BSA and α-La), the isotherm curvature bended at 
low protein concentrations, which indicated that, in the chromatographic process, 
nonlinear isotherm conditions can already be encountered at low protein loads. 
Furthermore, the molar concentration of the protein in the adsorbed phase at equi-
librium q * was much lower for BSA than for a-La, which again confrmed the signif-
cant contribution of exclusion effects in the adsorption mechanism. 

FIGURE 1.10 Isotherm courses for single proteins. A) BSA, LYS, α-La on the BS resin, 
B) BSA, LYS, and a monoclonal antibody (mAb2) on the TP resin, C) infuence of the salt 
concentration on the isotherm course for LYS, and D) for BSA. 

A) and B) from: R. Muca, M. Żurawski, W. Piątkowski, D. Antos, J. Chromatogr. A, 1492 (2017) 79–88 
[49], C) from: I. Poplewska, W. Piątkowski, D. Antos, J. Chromatogr. A. 1386 (2015)] 1–12, [79], D) 
from: R. Muca, M. Kołodziej, W. Piątkowski, G. Carta, D. Antos, J. Chromatogr. A, 1625, (2020) 461309 
[29]. 



 

 

 
 

17 Kinetic and Thermodynamic Aspects of HIC 

Moreover, the courses of the curves did not follow the Langmuir-type isotherms, 
as demonstrated on the Scatchard plots in Figures 1.11B and 1.11D. The maximum 
of the Scatchard plot can be attributed to a change in the adsorption mechanism from 
negative to positive cooperative adsorption. 

In the isotherm courses predicted by the dynamic method, the upward-sloping 
curve is missing; therefore, they signifcantly differ from those determined using the 
static method. In the case of BSA, the isotherm courses obtained by both methods 
converge only at very low protein concentrations, whereas for a-La they are dif-
ferent over the whole concentration range. This discrepancy can be attributed to 
kinetic limitations, which hinder protein binding, unfolding, and formation of pro-
tein clusters in short-lasting chromatographic elution. Therefore, the determination 
of all parameters of the dynamic model must be based on both dynamic profles and 
adsorption equilibrium data. The partial elution profles can be used to assess the 
kinetics of protein binding and unfolding, whereas the isotherm data can be used to 
quantify the effect of the cluster formation in the adsorbed phase. 
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From: R. Muca, M. Żurawski, W. Piątkowski, D. Antos, J. Chromatogr. A, 1492 (2017) [49]. 
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FIGURE 1.12 Predicted contributions of different adsorption mechanisms to total protein 
adsorption. A), B) BSA on the BS and TP resins, respectively, and C) LAC on the BS resin. 
qtot, qn, qu, qnc are the adsorbed phase concentrations corresponding to adsorption: total, 
native form, unfolded form, and native in clusters, respectively (Eqs. 1.1–1.8). 

From Muca, M. Kołodziej, W. Piątkowski, G. Carta, D. Antos, J. Chromatogr. A, 1625, (2020) 461309 
[29]. 

Figure 1.12 presents the hypothetical contribution of different surface mecha-
nisms to the isotherm course of BSA and α-La predicted based on the three-state 
mechanistic model (Eqs. 1.1–1.8). The model predicted a maximum formation of the 
unfolded form over the range of low protein concentrations and its decay at higher 
concentrations accompanied by an increasing contribution of the cluster formation. 

Figures 1.13 and 1.14 illustrate the adsorption isotherms obtained for binary mix-
tures of different proteins. For comparison, the individual isotherms are overlaid on 
the same plots. Figures 1.13A–1.13D present the isotherms for LYS and mAb2 in the 
form of incremental concentrations of the proteins for both resins; Figures 1.13A 
and 1.13C illustrate the effect of the presence of LYS on the adsorption of mAb2, 
and Figures 1.13B and 1.13D illustrate the effect of the presence of mAb2 on the 
adsorption of LYS. In all cases, increasing concentrations of LYS cause signifcant 
reduction in the binding strength of mAb2, whereas increasing concentrations of 
mAb2 almost do not infuence the adsorption of LYS. This can be explained by the 
difference in the molar concentrations of BSA and LYS correlated with the molecu-
lar size of the proteins, which triggers the size exclusion effect; small molecules of 
LYS replace large molecules of mAb2 that are not accommodated well in the 30 nm 
pores of the BP resin. 

The isotherms were more favorable for the TP resin compared with the BP resin; 
therefore, the effect of competitive binding (negative cooperative adsorption) was 
more pronounced for the former (Figures 1.13C and 1.13D). The size exclusion effect 
was still active, that is, the presence of LYS affected the adsorption of mAb2 more 
than the presence of mAb the adsorption of LYS, but it was weaker than for the BP 
resin. This can be explained by the difference in the pore size of the resins; mAb2 
molecules have better access to 100 nm pores of the TP resin compared with the BS 
resin. 

Figures 1.14A and 1.14B present the isotherms for the pair LYS and BSA on the BS 
resin; in Figure 1.14A, the effect of the presence of LYS on the adsorption of BSA is 
presented, while in Figure 1.14B, the effect of the presence of BSA on the adsorption 



 

 

   

  

 
 

 

 

19 

+ LYS 

mAb2 

Kinetic and Thermodynamic Aspects of HIC 

A) B) 
0.06 0.4 

0.05 

0 2 4 6 8 

+ LYS 

mAb2 

+ LYS 

mAb2 + LYS BS 

C * 
LYS  10 

3

 34

      185 

+
m

Ab2 

C * 
mAb2  10 

3 

2.5 

3.5 

LYS + mAb2 BS 
LYS 

q*
 µ

m
o

l 
m

L
-1

 
q*

 µ
m

o
l 

m
L

-1 co
l

0.3 

0.2 

0.1 

0.04 

0.03 

0.02 

0.01 

0.00 0.0 
0  50 100 150 200 250 300 350 

-1 3 -1 3C µmol mL  10 C µmol mL  10 

C) D) 
0.10 

0.06 

0 2 4 6 8 

mAb2 + LYS 

C* 
LYS  10 

3 

27.5

 180 

co
l 

TP 

0.15 

0.30 

0.25 

0  30  60  90 120 

+
m

Ab2 

C * 
mAb2 10 

3

 2.5 

LYS + mAb2 TP 

LYS
0.08 

0.20 

0.04 
0.10 

0.02 
0.05 

0.00 0.00 

-1 3 -1 3C µmol mL 10 C µmol mL 10 

FIGURE 1.13 Adsorption isotherms of binary mixtures of mAb2 and LYZ on the BS resin. 
A), C) Infuence of LYS on the adsorption of mAb2 on the BP (snapshot) and TP resins, res-
pectively; B), D) infuence of mAb2 on the adsorption of LYZ on the BP and TP resins, 
respectively. The salt concentration for BS: 0.765 M AS and for TP—0.595 M AS. C* is the 
equilibrium concentration in binary mixtures in µmol mL-1. 

From: R. Muca, M. Kołodziej, W. Piątkowski, G. Carta, D. Antos, J. Chromatogr. A, 1625, (2020) 
461309 [29]. 

of LYZ is presented. The favorable shape of the isotherm of BSA diminishes in 
the presence of LYS and takes a linear form at higher LYS concentrations (above 
about 180x10-3 μmol mL-1), whereas increasing concentrations of BSA almost do not 
affect the adsorption of LYS. This unusual adsorption behavior may result from dif-
ferences in the adsorption of the native and unfolded forms of BSA. Adsorption of 
the native form was relatively weak and occurred in a linear isotherm range, whereas 
the adsorption of the unfolded form was much stronger and was characterized by a 
favorable non-linear isotherm. It can be expected that the presence of LYS induced 
the crowding effect, which reduced the unfolding of BSA on the adsorbent surface. 
This stems from the difference in the molar concentrations of BSA and LYS and the 
molecular size of the proteins. At a suffciently high LYS concentration, the native 
form of BSA prevails in the adsorbed phase. 
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FIGURE 1.14 Adsorption isotherms of binary mixtures of BSA with LYS or BSA with α-
La. A), C) Infuence of LYS on the adsorption of BSA on the BS and TP resins, respectively, 
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From: Muca, M. Kołodziej, W. Piątkowski, G. Carta, D. Antos, J. Chromatogr. A, 1625, (2020) 
461309 [29]. 
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Figures 1.14C and 1.14D illustrate the adsorption of BSA and LYS on the TP 
resin. BSA was less affected by the presence of LYS compared to the BS resin, which 
could have resulted from the difference in pore size between the BP and TP resins. 
Moreover, the pores of the TP resin can accommodate BSA molecules better than 
mAb2; therefore, the adsorption pattern of the pair of BSA and LYS on the TP resin 
is more characteristic of competitive binding compared with the pair of mAb2 and 
LYS (Figure 1.13). 

The adsorption equilibrium of the pair α-La and BSA on BS is illustrated in 
Figures 1.14C and 1.14D; an increase in the concentration of α-La caused a strong 
reduction in the adsorption of BSA, whereas the adsorption of α-La was only slightly 
affected by BSA within the molar concentration range analyzed. Again, this can be 
attributed to the difference in the molar concentrations of the proteins as well as the 
stronger non-linear binding of α-La. 

1.6 SOLUBILITY LIMITATIONS 

1.6.1 samPle solvent effeCt 

The binding capacity of proteins on HIC media increases with increasing concentra-
tions of kosmotropic salt; therefore, a relatively high salt content is usually used in 
the loading step of the chromatographic process. The presence of a high amount of 
kosmotropic salt in the solution may cause protein precipitation; therefore, the pro-
tein concentration in the loading buffer is restricted by the protein solubility. Thus, to 
increase the separation throughput, a high volume of dilute protein solution is often 
loaded into the column, which increases the duration of the loading step and thus 
impairs the process productivity. To reduce the loading volume, the protein can be 
dissolved up to a high concentration in the solution with a low salt content and eluted 
with a salt-reach mobile phase. Since the elution strength of the solutions strongly 
depends on the salt content, such a procedure can alter the adsorption behavior of 
proteins and cause band deformation. The sample solvent effect also occurs when 
the solution to be processed by HIC is an effuent of another separation process 
whose solvent environment is different from the mobile phase in HIC. A high elu-
tion strength of the sample solvent triggers accelerating the migration velocity of 
chromatographic peaks, which reduces solute retention [56, 57, 83–90]. An increase 
in the injection volume causes the protein to co-elute with the sample solvent over 
a longer distance in the column. This results in band broadening, which enhances 
with increasing injection volume. Moreover, kinetic effects arising from slow rates 
of mass transport may promote band deformation and cause the protein to co-elute 
with the sample solvent over the full length of the column. 

Figure 1.15A shows a band profle of a protein dissolved in a salt-free solution, 
injected with a salt-rich loading buffer, and eluted with a salt gradient. The protein 
band split into two separated peaks. The frst appeared at the column outlet along 
with the sample solvent, whereas the second one was eluted only with the salt gradi-
ent. However, when the feed was dosed in small-volume portions, the sample solvent 
diluted in the mobile phase while migrating through the column, and band splitting 
was avoided (Figure 1.15B). 
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FIGURE 1.15 HIC elution of ovalbumin (OVA) dissolved in a salt-free loading buffer. 
A) Large injection volume, B) small injection volume in multiple injections. 

From: W. Marek, R. Muca, W. Piątkowski, D. Antos, J. Chromatogr. A1218 (2011) 5423–5433 [56]. 

The extent of the phenomenon also depends on the mobile phase fow rate; a 
change in fow rate causes the corresponding change in the peak size and in the dura-
tion of the contact between the protein and the sample solvent, hence in the contribu-
tion of adsorption kinetics to band broadening. 

The remedy for undesirable sample-solvent effects might be a reduction in the 
loading volume and its compensation by an increase in the protein concentration. 

1.6.2 risK of in-Column PreCiPitation 

As mentioned in Section 1.6.1, another problem that can occur when processing 
the protein in concentrated solutions of kosmotropic salts is the risk of precipita-
tion or crystallization inside the column. The presence of an additional phase in the 
form of amorphous precipitate, gel, or protein crystals can trigger fow blockage, 
destruction of elements of the chromatographic system, and failure of the separa-
tion process. This phenomenon can occur in the course of protein elution when the 
protein solubility limit is exceeded due to changes in the salt concentration in the 
mobile phase. This issue is illustrated in Figure 1.16 for LYS. Figure 1.16A shows 
a solid–liquid equilibrium (SLE) diagram of LYS in AS solutions. The cloud point 
line indicates the lower boundary for protein precipitation or gelation, which are 
fast or instantaneous processes. Between the cloud point line and the solubility line, 
there is the metastable region in which crystallization of the protein is possible but 
kinetically inhibited. If the crystallization rate is suffciently slow, which is often the 
case in protein crystallization, the protein can be processed in chromatographic col-
umns in the metastable zone without triggering crystallization. Nevertheless, design 
of such a process requires knowledge of SLE and crystallization kinetics. Figure 
1.16B shows the elution of the protein loaded in the mobile phase with a concentra-
tion below the solubility limit and desorbed with a salt gradient. The corresponding 
local concentration levels of the cloud point and the solubility indicate that the pro-
tein concentration in the desorption band was far below the cloud point boundary, 
whereas it markedly exceeded the solubility limit. Figure 1.17A shows the elution of 
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the protein dissolved in a salt-free loading buffer and eluted with the salt gradient. In 
both cases, the protein concentration locally fell into the metastable zone, but due to 
the very slow crystallization rate, the crystalline phase was practically not formed. 
It is shown in Figure 1.17B, where the amount of the crystalline phase formed dur-
ing the elution process, which was calculated by coupling the dynamic model with 
crystallization kinetics specifc to the protein, is depicted. The concentration of the 
crystalline protein did not exceed 10-14 µmol per mL of the resin. 
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1.7 BAND DEFORMATION IN THERMALLY 
HETEROGENEOUS COLUMNS 

Since the adsorption properties of proteins on HIC media depend strongly on tem-
perature, temperature gradients might be used to improve separation selectivity or 
even to replace the salt gradient with the temperature gradient. An example of HIC 
separation of a model ternary mixture by a combination of temperature and salt 
gradient is shown in Figure 1.18 [74]. A baseline separation of myoglobin (MYO) 
and LYZ was achieved by a step change in temperature; the most retained BSA was 
received by a step change in the salt concentration. 

However, a prerequisite for effcient realization of temperature-mediated sep-
arations is to ensure uniformity of temperature distribution in radial and axial 
directions by fast exchange of thermal conditions of the system. Thermal heteroge-
neity can be caused by viscous friction of the mobile phase or ineffective thermal 
equilibration of the mobile phase [91–96]. The latter source is of major impor-
tance in ultra-HPLC columns packed with submicron porous particles [96–102] 
but insignifcant in low-pressure HIC systems [75]. However, differences in the 
temperature of the mobile phase and the temperature of the column wall induce 
the formation of axial and radial temperature gradients, which may result in the 
departure of the temperature gradient from the desired shape and distortion of 
protein band profles. This phenomenon is affected by the mobile phase fow rate, 
column dimensions, and temperature differences between the column wall and the 
mobile phase [75]. 

An example of the radial temperature gradient measured in an HIC column oper-
ated at low pressure is presented in Figure 1.19A. The column wall was thermostatted 

700 25 

Csalt M
 

1.2 

600 
20 

0.9 
500 

15400 
0.6 

300 10 
200 0.3 

5 
100 

0 0 

CV 

FIGURE 1.18 Elution of a ternary protein mixture of myoglobin (MB), LYS, BSA by a 
combination of temperature and salt gradients of, Cinj,MB = 0.058 µmol mL-1 Cinj,LYS = 0.070 
µmol mL-1, Cinj,BSA = 0.015 µmol mL-1 (Cinj,MB,LYS,BSA = 1.0 mg mL-1), Vinj = 0.1 mL, Q = 0.5 mL 
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From: R. Muca, W. Piątkowski, D. Antos, J. Chromatogr. A, 1216 (2009), 8712–8721 [74]. 
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From: R. Muca, W. Piątkowski, D. Antos, J. Chromatogr. A, 1216 (2009), 6716–6727 [75]. 

at a temperature 20°C lower than the mobile phase fed into the column. Heterogeneity 
of temperature distribution was enhanced with increasing column length. This 
resulted in the splitting of the protein band profle, as illustrated in Figure 1.19B. A 
part of the protein migrated faster through the column at the retention corresponding 
to the wall temperature, whereas the remaining part lagged behind and was eluted 
by the salt gradient at the retention associated with the temperature of the mobile 
phase. Still, the uniformity of the temperature distribution can be maintained when 
the rate of heat transfer from the column wall to the environment is much lower than 
the rate of heat transfer inside the column. This condition is met when heat exchange 
between the column wall and the environment occurs by natural convection or when 
the column is insulated with an insulating material protected from the condensation 
of humidity [75, 98]. The radial temperature profle for the latter case is illustrated 
in Figure 1.19A. 

1.8 SUMMARY 

In this chapter, different thermodynamics and kinetic effects underlying protein 
adsorption on HIC media have been discussed. The focus was on the examination 
of less recognized phenomena accompanying elution of proteins in HIC, including 
protein unfolding and cooperative adsorption along with competitive and synergistic 
effects, as well as on pitfalls associated with non-isocratic protein elution that are 
triggered by the sample solvent effect, which may occur while processing supersatu-
rated protein solutions or in temperature-mediated separations. 
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Protein unfolding can induce undesirable effects in the form of multipeak elution. 
This phenomenon diminishes with increasing protein loading due to the crowding 
effect. Yet when the unfolded form tends to aggregate, an increase in protein con-
centration may accelerate the rate of aggregation, which favors aggregate formation. 

The presence of other proteins in a multicomponent solution can also trigger the 
crowding effect, which is enhanced by size exclusion. Adsorption of a smaller pro-
tein with better accessibility to the pore volume of adsorbent and with a higher molar 
concentration may be preferred over its large-molecule competitors. 

At high protein loads, preferential or multilayer adsorption can occur, which 
manifests in continuously increasing upper parts of the isotherm curves. In the case 
of strong interactions in the adsorbed phase, protein clusters may form irreversible 
bounded aggregates. However, cluster formation may be kinetically inhibited and 
therefore negligible in chromatographic elution. In such cases, the protein retention 
behavior does not refect the pattern indicated by the isotherm courses. 

Peak deformation may also occur in non-isocratic elution when different sol-
vents are used in the protein feed solution and the mobile phase. The presence of 
the sample solvent alters the protein adsorption behavior, which can be a cause of 
band broadening or of peak splitting. This effect weakens at small-volume injec-
tions, whereas it can be strongly pronounced when a large volume of the sample is 
injected. 

Non-isocratic elution by salt gradient is accompanied by the concentration of 
protein solution in desorption bands. When the protein concentration exceeds the 
solubility limits, precipitation can occur. However, if the kinetic rate of protein crys-
tallization is slow, it is possible to elute the protein at a concentration that falls into 
the metastable zone without the risk of crystallization. 

Another cause of pitfalls in HIC is the thermal heterogeneity of the column, which 
may occur due to improper column thermostatting in temperature-mediated separa-
tions. The radial and axial thermal column heterogeneity implicates the distribution 
of the mobile phase velocity. Moreover, it also alters protein adsorption behavior 
in HIC, which is strongly temperature-dependent. This has a detrimental infuence 
on column performance. Nevertheless, this effect can be avoided by proper column 
insulation and eluent pre-heating. 

The occurrence of each of the effects mentioned above can trigger a failure of the 
separation process or at least a reduction in the yield and purity of the target protein, 
thus destroying the benefts of the HIC technique. Still, while recognized and quanti-
fed, these pitfalls can be avoided, and the separation can be realized with high yield, 
throughput, and product purity. 
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2.1 INTRODUCTION 

Evaporation is a fundamental, natural process that has an impact in many diverse 
areas of science and engineering. For example, in environmental engineering, evap-
oration is a dominant weathering process that can infuence compound distribution 
following a petroleum or other chemical waste spill [1]. In forensic science, evapora-
tive residues of ignitable liquids such as gasoline may indicate that a fre is intentional 
rather than accidental [2]. Evaporation also has signifcance in some manufacturing 
and industry sectors. For example, favor and aroma volatiles, whether natural or 
synthetic, are important in foods and beverages as well as perfumes and fragrances 
[3]. In addition, organic solvent residues may be present after manufacture, posing a 
health hazard in pharmaceuticals, supplements, and related products [4]. Finally, in 
homeland security and law enforcement, evaporation can infuence the dispersal of 
chemical warfare agents, explosives, and their degradation products [5–8]. In these 
and many other areas, a thorough and comprehensive understanding of the evapora-
tion process is necessary. 

Although the evaporation rate can be experimentally measured, it is often time 
consuming and may be hazardous with the risk of fre, explosion, and exposure to 
toxic vapors. It is more practical to model the evaporation process based on physical 
properties, such as boiling point, vapor pressure, or rate constant. Many models of 
this kind have been developed, particularly for environmental applications. These 
models vary in their foundation, whether empirically or theoretically derived, and 
whether based in thermodynamics, kinetics, or mass-transfer theory. 

Fingas developed an empirical approach to predict the percent evaporation of a 
sample as a function of time and temperature [9, 10]. Experimental measurements 
of the change in mass of the sample were ft to either a logarithmic or square-root 
function of time using nonlinear regression. This approach was applied to crude oils 
and refned petroleum fuels at various temperatures, for which extensive information 
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is available in the literature [11]. However, to apply these models, the identity and 
source of the fuel must be known and the regression coeffcients for that fuel must 
be available. Fingas also developed two general equations, one with logarithmic and 
one with square-root dependence on time, that are based on the weight percent of 
the fuel distilled at 180°C [12]. Although these general equations do not require that 
the specifc fuel source be known, they do require the relevant distillation data and, 
hence, may require a sample of the fuel. 

The analytical models use a mass-transfer approach, often based in thermody-
namics, combined with experimental measurements. Mackay and Matsugu’s model 
predicts the evaporation rate, or change in volume with time, based on the vapor 
pressure and temperature of the sample [13]. For pure liquid samples, such as water 
and cumene, acceptable agreement was observed between the predicted and experi-
mentally determined evaporation rates. However, for gasoline, the predicted evapora-
tion rate was notably faster than the experimental rate [13]. 

In the empirical models described above, the fuel is considered as a single compo-
nent with physical and chemical properties that are a fxed average of all constituents 
[9, 10, 12, 13]. However, because fuels such as gasoline are complex mixtures in which 
the properties change as a function of evaporation level, single-component models 
are prone to prediction errors [14–16]. Other modeling approaches have been used in 
which the fuel is considered to contain multiple components, whether pure constitu-
ents or mixtures of constituents with similar properties (called pseudo-components). 

Stiver and Mackay adapted the analytical model to predict the evaporation rate 
of individual compounds in complex mixtures using a “synthetic oil” composed 
of normal (n-) alkanes [17]. The n-alkane mixture was experimentally evaporated 
using three different methods: tray evaporation, gas stripping, and distillation. The 
frst two methods are isothermal, where tray evaporation is mass-transfer limited 
and gas stripping is equilibrium controlled. In contrast, distillation is isobaric and 
non-isothermal, measuring volume distilled as a function of boiling temperature. 
To predict the evaporation of individual compounds, the net vapor pressure in 
the analytical model was substituted with the partial vapor pressure, calculated 
according to Raoult’s law [17, 18]. This model was applied to predict evaporation 
of the n-alkane mixture, with generally good agreement between the predicted 
and experimental evaporation rates for tray evaporation and gas stripping methods. 
For the distillation method, however, discrepancies were observed between the 
predicted distillation curve and boiling point data for n-alkanes from the literature. 
This discrepancy was attributed to the design of the still, which was found to have 
more than one theoretical plate. After correcting for this error, the model was 
then applied to crude oil samples, with relevant vapor pressure or boiling point 
obtained from distillation curves, with satisfactory results [17]. 

The pseudo-component model, which is based on the analytical model of Stiver 
and Mackay, is the most common method currently used to estimate the extent of 
fuel evaporation. This model approximates the composition of a complex fuel as 
several discrete and independent components whose properties are derived from dis-
tillation data. The total evaporation of the fuel is based on the sum of the evaporation 
of the pseudo-components. This allows for a more accurate determination of vapor 
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pressure and molar volume, but requires additional empirical data and assumptions 
to implement the model [14–16, 19, 20]. 

Many of the models described above, especially those based in mass-transfer 
theory, require a distillation curve to determine the physicochemical and transport 
properties of the fuel or its pseudo-components. Using traditional distillation meth-
ods, there is considerable uncertainty in the estimates of these properties. More 
recently, Bruno et al. developed the advanced distillation curve (ADC) apparatus 
and method [21]. In this approach, the liquid- and vapor-phase temperatures, distil-
late volume, and other parameters are continuously and accurately measured. Trace 
chemical analysis is performed on each distillate fraction using any suitable ana-
lytical technique, such as gas chromatography–mass spectrometry (GC-MS). Using 
the ADC method, more accurate and thermodynamically meaningful estimates of 
properties are obtained for a wide range of fuels [21–23]. 

Jackson and co-workers employed a more classical thermodynamic approach to 
predict evaporation of a simulated gasoline mixture of 7—9 components, including 
n-alkanes, alkyl benzenes, and naphthalenes [24, 25]. Vapor pressures for each compo-
nent were calculated using the Antoine equation [26], and the partial and total pressures 
were calculated using Raoult’s law and Dalton’s law, respectively [27]. Evaporation 
was simulated by mathematically removing a small fraction of the vapor phase in a 
step-wise manner, recalculating the partial and total pressures at each step. Overall, 
there was good agreement between the predicted and experimental mole fractions of 
each component remaining in the liquid phase [24, 25]. Although this approach shows 
promise, at present it can only be applied to a small number of components. It is not yet 
practical for more complex mixtures, as the identity and mole fraction of all compo-
nents must be known and their Antoine coeffcients must be available in the literature. 

Regnier and Scott developed a kinetic model to predict evaporation of crude oil 
based on the composition of n-alkanes [28]. A regression equation was established 
between the calculated vapor pressure (thermodynamic property) and the measured 
evaporation rate constant (kinetic property) of the selected n-alkanes. From this 
equation, the rate constant can be predicted for any component if the vapor pres-
sure is known. The predicted rate constants, together with the initial concentrations, 
enable calculation of the fraction remaining of the n-alkanes at given time intervals. 
The sum of these fractions for the n-alkanes agreed well with the fraction remain-
ing of the total crude oil at each time interval and at temperatures of 5, 10, 20, and 
30°C. However, practical application of this model requires detailed knowledge of 
the chemical composition of the crude oil [28]. 

Okamoto et al. used a similar regression approach to predict the amount of gaso-
line vapor generated after a spill [29]. Gasoline samples were evaporated at room 
temperature from 0—70% by mass, in increments of 10%, and the vapor pressure 
and evaporation rates were determined experimentally. The authors demonstrated 
that the vapor pressure and evaporation rate were exponentially related to the mass 
of gasoline lost at constant temperature. In a later study, Okamoto et al. applied 
similar principles to predict evaporation and diffusion of mixtures of gasoline and 
kerosene [30]. Both of these studies considered the fuel as a single component rather 
than a mixture of the individual components. Accordingly, the vapor pressure could 
not be calculated from standard equations, as in the work of Regnier and Scott [28], 
but was obtained from experimental measurements. 
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Although the models described above were developed specifcally to predict evap-
oration of petroleum fuels, in principle, they can be adapted for other samples and 
other applications. However, there are inherent problems that limit the practical util-
ity and accuracy of each model. The primary diffculty relates to the physicochemi-
cal properties (vapor pressure, boiling point, rate constant, etc.) that are needed as 
input parameters. For models that treat the sample as a single component, these 
properties are usually measured as a bulk value from the original sample. However, 
as the sample evaporates, the bulk value of the property changes, and the presumed 
time dependence (often linear, logarithmic, or square root) leads to uncertainty and 
inaccuracy. For models that treat the sample as individual components (or pseudo-
components), each component must be identifed and its properties must be known, 
predicted, or measured. This limits the number of components that can realistically 
be accommodated for complex samples. 

To overcome these limitations, the ideal model should be capable of characterizing 
the evaporation of every component, even in highly complex samples, without implic-
itly knowing the chemical composition or the properties of the sample. To achieve this 
goal, McIlroy et al. [31, 32] developed a classical kinetic model in which the evapora-
tion rate constants are empirically related to a surrogate property, the gas chromato-
graphic retention index. In gas chromatography (GC), the separation is based directly 
on boiling point or vapor pressure when using a nonpolar stationary phase such as 
polydimethylsiloxane. The high resolution of gas chromatography allows the separa-
tion of many, if not all, of the components, which, in turn, allows the retention index to 
be accurately determined and the evaporation rate constants to be calculated. Finally, 
the kinetic foundation provides a theoretically established relationship to time and 
temperature. In this chapter, the fundamental basis of this model is described and its 
validation is demonstrated with emphasis on environmental and forensic applications. 

2.2 THEORY 

2.2.1 KinetiC moDel of evaPoration 

In the irreversible kinetic model of evaporation, the system is assumed to be fully 
open, and compound X is transferred from the liquid phase (L) to the gas phase (G) 

k (2.1) X ˜ ° X˜L G 

where k is the rate constant for evaporation. The rate law, or rate of change in the 
concentration of X in the liquid phase [ XL ] as a function of time (t), is given by 

−d X[ ]L = k X[ ] (2.2) Ld t  

Upon separation of variables and integration, 

[ X ]L t = exp(−k t) (2.3) 
[ XL ]0 
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which is the integrated rate law describing evaporation in an irreversible system.
The rate constants were experimentally determined by McIlroy et al. by evap-

orating thin films of diesel fuel in a chamber with controlled temperature and 
then analyzing the samples by GC-MS with a nonpolar stationary phase [31, 32]. 
Approximately 78 compounds were selected for model development and 28 com-
pounds for model validation, including normal alkanes, branched alkanes, cyclic 
alkanes, alkyl benzenes, and polycyclic aromatic compounds. To illustrate the 
characteristic decay curves predicted by Equation 2.3, the fraction remaining in 
the liquid phase (F = X XL t L[ ] [ ]

0
) is shown as a function of evaporation time in 

Figure 2.1 for representative n-alkanes at 20°C. For n-octane (Figure 2.1A), with 
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FIGURE 2.1 Fraction remaining in the liquid phase versus evaporation time for (A) n-octane, 
(B) n-decane, (C) n-dodecane, and (D) n-tetradecane at 20°C [31].

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300

F
R

A
C

T
IO

N
  R

E
M

A
IN

IN
G

EVAPORATION  TIME  (h)

A

F = [XL]/[XL]0 = exp(– 2.26 × 10–1 t)



 

 
 

      
 
 
 
 
 

 

 

 

 

39 A Kinetic Model of Evaporation 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

EVAPORATION TIME (h) 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

EVAPORATION TIME (h) 

FIGURE 2.1 (Continued) 

the highest rate constant (k = 2.26 x 10-1 h-1), the fraction remaining decays in a 
characteristic time 5τ = 5/k = 22 h. At this time, the fraction remaining is F = exp 
(–5) = 0.0067, which corresponds to 99.33% evaporated (i.e., nearly complete). The 
rate constant for each n-alkane systematically decreases with increasing carbon 
number: 2.01 x 10-2 h-1 for n-decane (Figure 2.1B), 2.20 x 10-3 h-1 for n-dodecane 
(Figure 2.1C), and statistically indeterminate for n-tetradecane (Figure 2.1D) at 
20°C. The characteristic decay time (5τ = 5/k) is approximately 250 h, 2300 h, and 
indeterminate for n-decane, n-dodecane, and n-tetradecane, respectively. Hence, 
the addition of each ethylene group (-C2H4-) to the n-alkane structure causes a 
10-fold decrease in the rate constant and a 10-fold increase in the time required for 
complete evaporation. 
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The initial work by McIlroy et al. provided evaporation rate constants for com-
pounds in the range from n-octane to n-tetradecane [31, 32]. However, many samples 
of environmental and forensic interest contain more volatile compounds whose rate 
constants exceed this range. To address this issue, Burkhart et al. measured evapo-
ration rate constants for 11 additional compounds in the range from n-pentane to 
n-octane [33]. Because of the high volatility of these compounds, their vapor accu-
mulated in the headspace of the evaporation chamber, changing the kinetics from an 
irreversible frst-order reaction given by Equation 2.1 to a reversible reaction given 
by Equation 2.4 

˜ °  ke˜XL ˛ ˜̃ 
k 

XG ˜ °̃ Xe (2.4) 
k ' 

where k and k’ are the rate constants for evaporation and condensation, respectively. 
In addition to the liquid–vapor equilibrium, the compound in the vapor phase can 
exit (Xe) from the system by means of air fow, with a rate constant of ke. When cor-
rected for condensation, the evaporation rate constants for representative n-alkanes 
at 20°C are as follows: 18.6 h-1 for n-pentane, 3.86 h-1 for n-hexane, 0.823 h-1 for 
n-heptane, and 0.240 h-1 for n-octane. The characteristic decay times (5τ = 5/k) are 
approximately 0.27, 1.3, 6.1, and 21 h for n-pentane to n-octane, respectively. Again, 
the addition of each ethylene group (-C2H4-) to the n-alkane structure causes roughly 
a 10-fold decrease in rate constant and a 10-fold increase in the time required for 
complete evaporation. Because these data were collected by a different investigator 
at a different time, they are validated separately in the discussion below. 

2.2.2 retention inDex as a surrogate for evaPoration rate Constant 

In Equation 2.3, the fraction remaining in the liquid phase is calculated from the 
rate constant for evaporation. Although this approach is theoretically correct and 
accurate, it requires that all compounds be identifed and their relevant properties 
be known, experimentally determined, or predicted. To overcome this limitation, 
a surrogate property may be used that is closely related to the rate constant. The 
gas chromatographic retention index is uniquely well suited for this purpose. When 
compounds are separated on a nonpolar stationary phase, such as 100% polydimeth-
ylsiloxane, they elute in order of increasing boiling point. The retention index under 
temperature-programmed conditions (IT) is calculated from the retention time for 

the compound of interest ( tT ) and the retention times for the n-alkanes of carbon R i, 

number z that elute immediately before (tT ) and after (tT 
+1).R z, R z, 

˝ 
z+ 

T Tt − tR i, R z, 
T Tt − tR z, +1 R z, 

ˇ
TI =100ˆ 

ˆ̇ 
� 
�̆ (2.5) 

The retention index is independent of GC parameters, such as column length and 
diameter, stationary phase thickness, fow rate, and temperature program. Thus, 
it is more broadly applicable than retention time or retention factor, and more 
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reproducible with different instruments and in different laboratories. Moreover, it is 
not necessary to know the identity of each compound, only its retention time within 
the alkane ladder, in order to calculate the retention index.

2.2.2.1 Fixed-Temperature Models
The efficacy of retention index as a surrogate for rate constant is demonstrated in 
Figure 2.2A for the data collected by McIlroy et al. for various compound classes at 
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FIGURE 2.2 Logarithm of the rate constant versus retention index for n-alkanes (■), 
branched and cyclic alkanes (●), alkyl benzenes (♦), and polycyclic aromatic compounds (▲) 
at 20°C. (A) Experimental data of McIlroy et al. [31] with comprehensive fixed-temperature 
regression model for all compound classes shown as solid line (Equation 2.6, parameters 
given in Table 2.2) and comprehensive variable-temperature model shown as dashed line 
(Equation 2.8, parameters given in Table 2.3). (B) Combined experimental data of McIlroy 
et al. [31] and Burkhart et al. [33] with comprehensive fixed-temperature regression model 
for all compound classes shown as solid line (Equation 2.6, parameters given in Table 2.2).
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TABLE 2.1 
Class-specifc models developed to predict the evaporation rate constant at 
20°C based on retention index (Equation 2.6). For each model, the slope 
(m1), intercept (b), and square of the correlation coeffcient (R2) are given, as 
well as the mean absolute percent error (MAPE) for predicting rate 
constants for compounds in each class [31]. 

MAPE (%) in Rate Constanta 

Model Class m1 b R2 n - Branched Alkyl Polycyclic All 
Alkane Alkane Benzene Aromatic Compounds 

n-Alkane -1.14 × 10-2 7.61 0.999 4.90 10.2 19.2 42.7 19.0 

Branched -1.08 × 10-2 7.05 0.994 12.3 8.21 14.0 32.2 15.2 
Alkane 

Alkyl Benzene -1.08 × 10-2 7.20 0.992 25.6 17.1 5.70 21.5 15.0 

Polycyclic -1.00 × 10-2 6.47 0.992 43.8 35.6 14.7 4.05 23.3 
Aromatic 

All Compounds -1.04 × 10-2 6.70 0.981 24.3 15.0 6.92 19.7 14.2 

a MAPE = Σ | (kpred ‒ k )/k  | × 100/n, where kpred and k  are the predicted and experimental rate con-exp exp exp 

stants, respectively and n is the number of measurements 

20°C [31, 32]. The natural logarithm of the rate constant (ln k) is linearly related to 
the retention index by 

ln k m1 I
T + b (2.6) = 

where the best-ft slope (m1) and intercept (b) are determined by linear regression. For 
the highest accuracy, separate regression models can be developed for each compound 
class (Table 2.1). For example, the class-specifc model for the n-alkanes has slope m1 = 

-1.14 x 10-2, intercept b = 7.61, and the square of the correlation coeffcient R2 = 0.999 [31]. 
These regression parameters provide the most accurate prediction of rate constants for 
the n-alkanes (4.90% error), but higher error for branched and cyclic alkanes (10.2%), 
alkyl benzenes (19.2%), and polycyclic aromatic compounds (42.7%). Similarly, the 
class-specifc regression model for alkyl benzenes has lowest error for the alkyl benzenes 
(5.70%), but higher errors for all other compound classes (17.1—25.6%). While class-
specifc models are more accurate for compounds within the class, they are less conve-
nient because they require identifcation of the proper class for each compound of interest. 
Accordingly, a comprehensive regression model that is suitable for all compound classes 
is preferable. The comprehensive model for the compounds examined by McIlroy et al. 
(m1 = -1.04 x 10-2, b = 6.70, R2 = 0.981) has slightly higher error for all classes: n-alkanes 
(24.3%), branched and cyclic alkanes (15.0%), alkyl benzenes (6.92%), and polycyclic 
aromatic compounds (19.7%) (Table 2.1). However, the overall performance and accu-
racy of the comprehensive model (14.2% error) is better than that of any class-specifc 
model (15.0—23.0 % error) and is acceptable for practical applications. 



 

 
 

 
 
 
 
 

 
 
 
 
 
 
 

 

    

    

      

 

 

 

43 A Kinetic Model of Evaporation 

The data collected by McIlroy et al. (IT = 800—1400 [31, 32]) were combined with 
the data collected by Burkhart et al. (IT = 500—800 [33]) to extend the range of pre-
dicted evaporation rate constants. As shown in Figure 2.2B, the relationship between 
rate constant and retention index remains linear according to Equation 2.6. However, 
the regression parameters for the combined data set (m1 = -1.14 x 10-2, b = 7.79, R2 = 
0.986) are statistically different from those of the original data set (m1 = -1.04 x 10-2, 
b = 6.70, R2 = 0.981) at 20°C. In general, the rate constants for the more volatile com-
pounds of Burkhart et al. lie above the original regression line. Accordingly, the origi-
nal regression parameters provide the most accurate prediction of rate constants for 
IT = 800—1400 (14.2% error), but poorer prediction for IT = 500—800 (41.3% error), 
whereas the regression parameters for the combined data set provide more accurate 
prediction for IT = 500—800 (24.8% error), but poorer prediction for IT = 800—1400 
(17.5% error) at 20°C. For this reason, the most appropriate regression equation should 
be chosen based on the retention index range for the samples of interest. 

The class-specifc and comprehensive models discussed above were developed and 
validated at 20°C. Similar models were developed at 5, 10, 30, and 35°C by McIlroy 
et al. [32], and the results for the comprehensive models are summarized in Table 2.2. 
At all temperatures, the correlation coeffcients (R2 = 0.977—0.989) indicate a good 
quality of ft to Equation 2.6. It is noteworthy that the slopes and the intercepts show 
a systematic temperature dependence. As temperature increases, both the slope and 
intercept increase from -1.09 x 10-2 and 6.59 at 5°C to -1.00 x 10-2 and 7.70 at 35°C. The 

TABLE 2.2 
Fixed-temperature models developed to predict the evaporation rate 
constant based on retention index (Equation 2.6). For each model, the slope 
(m1), intercept (b), and square of the correlation coeffcient (R2) are given, as 
well as the mean absolute percent error (MAPE) for predicting rate 
constants for all compound classes [32, 33]. 

McIlroy Modela Burkhart–McIlroy Modelb 

Temperature m1 b R2 MAPE (%) in m1 b R2 MAPE (%) in 
(°C) Rate Constantc Rate Constantc 

5 -1.09 × 10-2 6.59 0.977 13.5 

10 -1.04 × 10-2 6.12 0.976 13.8 -1.20 x 10-2 7.86 0.985 20.9 

20 -1.04 × 10-2 6.70 0.981 14.2 -1.14 x 10-2 7.79 0.986 18.8 

30 -1.02 × 10-2 7.39 0.989 13.1 -1.06 x 10-2 7.83 0.992 13.7 

35 -1.00 × 10-2 7.70 0.989 13.5 

Average 13.6 18.4 

a McIlroy model developed over range IT = 800—1400, T = 5—35°C 
b Burkhart–McIlroy model developed over range IT = 500—1400, T = 10—30°C 

MAPE defned in Table 2.1 c 
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mean absolute percent error (MAPE) in the predicted rate constant for each fxed-tem-
perature model is 13.1—14.2%, with an average prediction error of 13.6% (Table 2.2). 

The more volatile compounds of Burkhart et al. were examined at temperatures 
of 10, 20, and 30°C [33]. When combined with the data of McIlroy et al. at the same 
temperatures, the results for the comprehensive models are summarized in Table 2.2. 
The correlation coeffcients for the Burkhart–McIlroy models (R2 = 0.985—0.992) 
are generally higher than those for the McIlroy models (R2 = 0.976—0.989) at the 
same temperatures. However, the prediction of rate constants is generally more accu-
rate with the McIlroy models than with the Burkhart–McIlroy models, with average 
errors of 13.6% and 18.4%, respectively. 

2.2.2.2 Variable-Temperature Models 
The fxed-temperature models described in Section 2.2.2.1 and summarized in 
Tables 2.1 and 2.2 can accurately predict the rate constants for evaporation [31– 
33]. However, for environmental and forensic applications, where temperature is 
rarely constant, it is more convenient and more broadly useful to develop a variable-
temperature model. According to the Arrhenius equation [27], the natural logarithm 
of the rate constant is inversely related to absolute temperature (T), 

Ealn k = ln A − (2.7) 
RT 

where Ea is the activation energy, R is the gas constant, and A is the pre-exponential 
factor. By combining Equations 2.6 and 2.7, a variable-temperature model to predict 
the rate constant can be defned as 

mT 2=ln k m1 I + + b (2.8) 
T 

where the best-ft slopes (m1 and m2) and intercept (b) are determined by multiple 
linear regression. Using the data of McIlroy et al., the regression coeffcients for the 
comprehensive model are m1 = -1.02 x 10-2, m2 = -6147, b = 27.8, and R2 = 0.975 [32]. 
The performance of the variable-temperature model is summarized in Table 2.3 at 
the same temperatures as the fxed-temperature models (5—35°C). In particular, the 
center column of Table 2.3 contains the retention index range used to develop the 
McIlroy models (IT = 800—1400), which can be directly compared. Although the 
fxed-temperature models are more accurate in predicting rate constants, with errors 
of 13.1—14.2% (Table 2.2), the variable-temperature model also has acceptable 
accuracy, with errors of 13.6—27.5% (Table 2.3). There are no noteworthy trends in 
accuracy with temperature for either the fxed-temperature or the variable-temper-
ature models. 

When the data of Burkhart et al. [33] for volatile compounds are combined 
with those of McIlroy et al. [32], the regression coeffcients for the comprehensive 
model are m1 = -1.12 x 10-2, m2 = -6045, b = 28.4, and R2 = 0.984. Again, there 
are statistically signifcant differences in the regression coeffcients for the McIlroy 
model and the Burkhart–McIlroy model, leading to different predictive accuracy. 
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TABLE 2.3 
Variable-temperature models developed to predict the evaporation rate 
constant based on retention index (Equation 2.8). For each model, the mean 
absolute percent error (MAPE) for predicting rate constants for all 
compound classes is given in the retention index range IT = 500—800, IT = 
800—1400, and IT = 500—1400 [32, 33]. 

MAPE (%) in Rate Constant a 

McIlroy Model b Burkhart–McIlroy Model c 

Temperature IT = IT = IT = IT = IT = IT = 
(°C) 500—800 800—1400 500—1400 500—800 800—1400 500—1400 

5 19.9 

10 55.4 17.7 24.9 39.5 17.4 21.6 

20 34.2 27.5 28.7 24.8 24.5 24.6 

30 17.4 13.6 14.2 24.6 15.7 17.1 

35 14.6 

Average 35.7 18.7 22.6 29.6 19.2 21.1 

a MAPE defned in Table 2.1 
b McIlroy model: m1 = -1.02 x 10-2, m2 = -6147, b = 27.8, and R2 = 0.975, developed over range IT = 

800—1400, T = 5—35°C 
c Burkhart–McIlroy model: m1 = -1.12 x 10-2, m2 = -6045, b = 28.4, and R2 = 0.984, developed over range 

IT = 500—1400, T = 10—30°C 

When compared over the retention index range used to develop the McIlroy model 
(IT = 800—1400), the variable-temperature model of McIlroy is slightly more accu-
rate than the Burkhart–McIlroy model, having average errors of 18.7% and 19.2%, 
respectively (Table 2.3). When compared over the broader retention index range used 
to develop the Burkhart–McIlroy model (IT = 500—1400), the variable-temperature 
Burkhart–McIlroy model is slightly more accurate than the McIlroy model, having 
average errors of 21.1% and 22.6%, respectively (Table 2.3). Although the predictive 
accuracy is quite similar over these retention index ranges, there is a signifcant 
difference for volatile compounds in the range IT = 500—800. Herein, the McIlroy 
model exhibits errors of 17.4—55.4%, with an average error of 35.7%, whereas the 
Burkhart–McIlroy model has errors of 24.6—39.5%, with an average error of 29.6%. 
Consequently, the most appropriate variable–temperature model should be chosen 
based on the retention index range for the samples of interest. 

2.2.3 fraCtion remaining anD fraCtion-remaining Curves 

For the fxed-temperature model, the fraction remaining (F
I T ) of an individual 

compound at retention index IT can be calculated by substituting Equation 2.6 into 
Equation 2.3 
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[ X ] TL I t, TF T = = exp (−k t) = exp − exp (m I  + b t) (2.9)I ( 1 )[ XL ]I T ,0 

where [ XL ]I T  and [ X ]  are the concentrations of compound X in the liquidT,0 L I t,
phase at time 0 (initial) and time t, respectively. Similarly for the variable-temperature 
model, the fraction remaining of an individual compound can be calculated by 
substituting Equation 2.8 into Equation 2.3. If the temperature remains constant, 
then 

[ X ] T ˘ m �L I t, ˘ T 2 �
F T = = exp (−k t) = exp − exp m I  + + b t  (2.10)I � � 1 � �[ X ] T � � T � �L I ,0 

If the temperature fuctuates as a function of time, an iterative calculation must be 
performed until the total evaporation time at all temperatures is reached 

n ˆ ˆ ˆ � ��1 mT 2F
I T = �[ XL ]I T , j−1 ̆

 exp˘− exp˘̆ m1 I + + b t�� j �� (2.11)
[ XL ]I T ,0 j=1 

˘
ˇ

˘
ˇ ˇ Tj � �

��� 

Equations 2.9–2.11 can be used to predict the extent of evaporation for an individual 
compound at retention index IT as a function of temperature and time. 

It is also useful to predict the extent of evaporation for the complete sample, 
whether as a bulk quantity or as a chromatogram. The total fraction remaining 
(FTotal) can be calculated as a bulk quantity by summation over the retention index 

range from initial (I i
T ) to fnal (I T

f ) values 

T TI If f 

F [ XL T F A T˝ I T ]I ,0 ˝ I T I ,0 

F = I T I T 
(2.12)i = i 

Total T TI I 

˝ 
f 

[ XL ] T ˝ 
f

A TI ,0 I ,0 
T TI Ii i 

where the individual values for fraction remaining (F
I T ) at each retention index are 

obtained from Equation 2.9, 2.10, or 2.11, as appropriate. In Equation 2.12, [ XL ]I T ,0
is the initial concentration of the compound at each retention index, which is pro-
portional to the detector response, such as the GC-MS abundance ( AI T ,0 ) of that 
compound in the unevaporated sample. The total fraction remaining represents the 
sample considered as a single or bulk entity; for example, if FTotal = 0.7, then 70% 
of the total sample remains and 30% has been evaporated. FTotal does not provide 
specifc information about the individual compounds in the sample. 

To observe how individual compounds are distributed, the total fraction remaining 
can be predicted as a chromatogram. First, a fraction-remaining curve is constructed by 
plotting Equation 2.9, 2.10, or 2.11, as appropriate, as a function of the retention index. 
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To illustrate the characteristic shape, a representative fraction-remaining curve using the 
fxed-temperature model (Equation 2.9) at T = 20°C and t = 1 h is shown in Figure 2.3A. 
From this sigmoidal curve, any compound with IT < 500 (n-pentane) is predicted to be 
completely evaporated (F

I T = 0). Compounds with 500 < IT < 1000 undergo evaporation 
to different extents, with an infection point at approximately IT = 700 (n-heptane) where 
the fraction remaining is F  = 0.5. Finally, compounds with IT > 1000 (n-decane) are 

I T 

relatively unaffected by evaporation (F  = 1). 
I T 

The fraction-remaining curve (Figure 2.3A) is then multiplied, point by point at 
each retention index, with the chromatogram of the unevaporated sample of gaso-
line (Figure 2.3B) to generate the chromatogram corresponding to a sample evapo-
rated at 20°C for 1 h. The predicted chromatogram of evaporated gasoline (Figure 
2.3C) illustrates many of the features discussed above. Compounds with IT < 500 
are completely evaporated, n-hexane (IT = 600) is reduced by approximately 90%, 
n-heptane (IT = 700) is reduced by approximately 50%, n-octane (IT = 800) is reduced 
by approximately 30%, n-nonane (IT = 900) is reduced by approximately 5%, and 
compounds with IT > 1000 are not signifcantly affected. 

The extent of evaporation in the chromatogram is directly related to the evaporation 
rate constant (k), as predicted from the McIlroy model or Burkhart–McIlroy model at 
fxed temperature (Equations 2.6 and 2.9) or variable temperature (Equations 2.8 and 
2.10 or 2.11). Hence, the error in the predicted rate constants, as discussed in Sections 
2.2.2.1 and 2.2.2.2 above, is refected in the error in the predicted chromatograms. A 
compound with a predicted rate constant that is higher than the experimental value 
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FIGURE 2.3 (A) Fraction-remaining curve calculated from Equation 2.9 using the 
comprehensive fxed-temperature model of McIlroy et al. [31] at T = 20°C and t = 1 h. 
(B) Experimental chromatogram of unevaporated gasoline. (C) Predicted chromatogram of 
evaporated gasoline generated by multiplying the chromatogram of unevaporated gasoline by 
the fraction-remaining curve (FTotal = 0.7). The n-alkanes are labeled, together with selected 
compounds: (1) toluene, (2) ethylbenzene, (3) m,p-xylene, (4) o-xylene, (5) ethylmethylben-
zene, (6) 1,2,4-trimethylbenzene, (7) 1,2,3-trimethylbenzene, (8) indane, (9) methylindane, 
(10) naphthalene, and (11) methylnaphthalene. 
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FIGURE 2.3 (Continued) 

(i.e., points below the regression line in Figures 2.2A and 2.2B, positive error in 
rate constant) will have a predicted concentration/abundance that is lower than the 
experimental value (negative error in concentration/abundance). Conversely, a com-
pound with a predicted rate constant lower than the experimental value will have 
a predicted concentration/abundance higher than the experimental value. However, 
these systematic errors arising from the kinetic model can be exceeded and masked 
by errors arising from experimental and instrumental sources. 

In this review chapter, several useful applications of the fxed- and variable-tem-
perature kinetic models are presented for environmental science (Section 2.3) and 
forensic science (Section 2.4). The accuracy of the models to predict evaporation of 
individual compounds and bulk samples, as well as chromatograms of those samples, 
is demonstrated. 
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2.3 ENVIRONMENTAL APPLICATIONS 

Petroleum and petroleum products are a major part of industrial and domestic activi-
ties, with approximately 20 million barrels of oil used each day in the United States 
[34]. With this widespread use, there are unintentional releases of petroleum and 
petroleum products into the environment from natural and anthropogenic sources. 
These latter sources can account for the release of approximately 200 million gallons 
per year through spills, leaks, and other discharges during the processing, transport, 
and consumption of petroleum and petroleum products. These releases can have a 
devastating effect on the surrounding environment for years after the release [35]. 

After an environmental release, petroleum begins undergoing physical, chemi-
cal, and biological weathering almost immediately. The weathering processes that 
occur are dependent on the type of petroleum that has been released, whether a 
crude oil or a refned product such as gasoline, kerosene, diesel, and heating oils, 
among many others. They are also dependent on the location of the spill, whether 
on land, in fresh water, or in salt water, as well as the temperature and many other 
environmental factors [36, 37]. Among these processes, evaporation is typically 
the most dominant weathering process, beginning immediately after the spill and 
continuing throughout the spill remediation [38, 39]. For typical crude oil, the mass 
loss due to evaporation ranges from 40—75%, whereas for refned products such as 
gasoline, evaporation can account for 100% of the mass loss [35]. 

In general, the identity of the petroleum product is known or can be surmised to 
arise from a source in temporal and spatial proximity to the spill. Accordingly, the 
primary goal of environmental modeling is to accurately predict evaporation or the 
fraction remaining of that petroleum product as a function of time and/or tempera-
ture. These predictions can be used to establish that exposure levels for humans and 
for wildlife, including land and aquatic species, are within safe levels. They can also 
be used to evaluate the effectiveness of remediation efforts by comparing the actual 
fraction remaining with that predicted for evaporation alone. 

In the following sections, the results of several environmental applications of the 
fxed- and variable-temperature kinetic models are presented. First, the models are 
used to predict the total fraction remaining of diesel fuel after evaporation under both 
constant temperature and fuctuating temperature conditions, which is compared with 
experimental results. This prediction is also performed for kerosene and marine fuel 
stabilizer. The models are then used to predict the distribution of individual com-
pounds in diesel fuel, kerosene, and marine fuel stabilizer after evaporation, which is 
compared with experimental results. Next, the models are used to estimate the evapo-
ration time from chromatograms of an unevaporated and an evaporated fuel sample. 
Finally, the models are used to estimate the time required to evaporate the total fuel or 
an individual compound, such as benzene, to a specifc fraction remaining. 

2.3.1 PreDiCtion of total fraCtion remaining 

The total fraction remaining provides a means to assess, at the most basic level, the 
net or collective environmental impact posed by a petroleum spill. Together with 
an estimate of the initial amount of the spill, it can be used to calculate the mass or 
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volume remaining as a function of time. It can also be used to evaluate and compare 
the net or collective effect of different remediation strategies.

2.3.1.1 Diesel Fuel
To test and validate the fixed- and variable-temperature models of McIlroy et al., three 
samples of automotive diesel fuel were evaporated at 20°C for a total time of 100 h [31, 
32]. Representative chromatograms of diesel fuel before and after evaporation are shown 
in Figures 2.4A and 2.4B, respectively. Diesel contains a wide range of compounds of 
varying volatility, including n-alkanes ranging from n-octane to n-docosane or higher, as 
well as branched and cyclic alkanes, alkyl benzenes, and polycyclic aromatics.

The experimental total fraction remaining was calculated from the average change 
in mass of diesel fuel before and after evaporation to be FTotal = 0.8176. The com-
prehensive fixed-temperature model was utilized to predict the fraction-remaining 
curve at T = 20°C and t = 100 h via Equation 2.9, with parameters given in Table 
2.2. This fraction-remaining curve (Figure 2.5, solid line) was then multiplied by the 
normalized abundance at the corresponding retention index in the chromatogram of 
the unevaporated diesel fuel (Figure 2.4A), and then summed according to Equation 

2.12 from I i
T = 800 to I f

T = 2200. The predicted total fraction remaining for the 
fixed-temperature model was FTotal = 0.8542, representing an error of 4.49% relative 
to the experimental value.

Similarly, the comprehensive variable-temperature model was utilized to predict 
the fraction-remaining curve at T = 20°C and t = 100 h via Equation 2.10, with param-
eters given in Table 2.3. This fraction-remaining curve (Figure 2.5, dashed line) was 
then multiplied by the chromatogram of the unevaporated diesel fuel (Figure 2.4A), 
and then summed according to Equation 2.12 from I i

T = 800 to I f
T  = 2200. The pre-

dicted total fraction remaining for the variable-temperature model was FTotal = 0.8347, 
representing an error of 2.09% relative to the experimental value.
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FIGURE 2.4 Experimental chromatograms of diesel fuel (A) prior to evaporation and  
(B) after evaporation at 20°C for 100 h. The n-alkanes are labeled.
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FIGURE 2.5 Fraction-remaining curve calculated using the comprehensive fixed-temperature 
model (Equation 2.9, solid line) and the comprehensive variable-temperature model (Equation 
2.10, dashed line) for evaporation at T = 20°C and t = 100 h.

The variable-temperature model was also validated under conditions of fluctuat-
ing temperature in order to simulate environmentally relevant diurnal and seasonal 
variations. The temperature was varied in the range of 12—27°C approximately 
every 12 h, for a total time of 100 h. The temperature profile, recorded in the evapo-
ration chamber at 2-min intervals, is shown in Figure 2.6A (solid line). Again, three 
samples of diesel fuel were evaporated. Based on the average change in mass before 
and after evaporation, the experimental total fraction remaining was FTotal = 0.8253. 
To predict the fraction remaining using the variable-temperature model, it is neces-
sary to use the iterative calculations in Equation 2.11, together with the temperature 
recorded at 2-min intervals. The iterative calculations were performed using an algo-
rithm written in-house [40]. The total fraction remaining was predicted via Equation 
2.12 to be FTotal = 0.8672, which represents 5.07% error compared to the experi-
mental value (Table 2.4). This error is slightly greater than that observed above at a 
constant temperature of 20°C (2.09%). This suggests that the variable-temperature 
model can predict the fraction remaining over a wide range of fluctuating tempera-
tures with good accuracy, comparable to that at constant temperature.

For many practical environmental applications, such highly accurate and detailed 
temperature data may not be available. For example, temperature data are available 
at hourly intervals for many areas in the United States from the National Oceanic 
and Atmospheric Administration (NOAA) National Climatic Data Center [41]. To 
simulate more readily available temperature data, profiles with the temperature col-
lected at 1-h, 5-h, and 12-h intervals were also utilized. The temperatures at 5-h 
intervals (circles) and 12-h intervals (asterisks) are shown in Figure 2.6A. In addi-
tion, the running average temperature was calculated (Figure 2.6A, dashed line). 
The comprehensive variable-temperature model (Equation 2.11, parameters given 
in Table 2.3) was used to calculate the fraction remaining using each temperature 
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interval. The predicted fraction remaining over the duration of the 100-h experi-
ment is shown in Figure 2.6B. The predicted fraction remaining for the 5-h and 12-h 
intervals is very similar to that for the 2-min interval at all evaporation times. When 
the running average temperature is used, the fraction remaining is slightly higher 
because the average temperature is less sensitive to the high and low temperature 
fluctuations (Figure 2.6A, dashed line). However, by 100 h, the predicted fraction 
remaining using the running average temperature (17.1°C) becomes more similar to 
that from the other temperature profiles.

FIGURE 2.6 (A) Temperature profile of the evaporation experiment with fluctuating 
temperature recorded every two minutes (solid line) and as a running average temperature 
(dashed line). The temperatures at 5-h intervals (●) and 12-h intervals ( ) are also shown. 
(B) Fraction of fuel remaining calculated by using the comprehensive variable-temperature 
model (Equation 2.11) at 2-min intervals (solid line), 5-h intervals (●), 12-h intervals ( ), and 
running average temperature (dashed line).
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The predicted total fraction remaining at the end of the 100-h experiment is sum-
marized in Table 2.4. In general, the fraction remaining is similar for all temperature 
profiles. The 2-min interval is expected to be the most accurate (FTotal = 0.8672), 
since it most closely reflects the actual temperature in the evaporation chamber. The 
running average temperature is expected to be the least accurate (FTotal = 0.8711), yet 
the difference between these two values is only 0.46%. The error for all time inter-
vals ranges from 4.91% to 5.27% relative to the experimental value, while that for 
the running average is 5.55%. This suggests that the use of the average temperature 
over the course of an environmental spill or discharge is a reasonable approximation. 
This is advantageous because the average temperature is more readily obtained and 
allows for simpler application of the predictive models.

2.3.1.2 Kerosene and Marine Fuel Stabilizer
One of the advantages of this kinetic model is that the same regression equations 
(Equations 2.6 and 2.9 for fixed temperature and Equations 2.8 and 2.10 or 2.11 for 
variable temperature) can be applied, in principle, to any petroleum fuel. To dem-
onstrate this capability, the fixed- and variable-temperature models were applied to 
predict the total fraction remaining for kerosene and marine fuel stabilizer. Three 
samples of each fuel were evaporated at a constant temperature of 20°C for 100 h,  
as discussed for diesel fuel in Section 2.3.1.1. Representative chromatograms of 
each fuel before and after evaporation are shown in Figures 2.7 and 2.8. Kerosene 

TABLE 2.4
The total fraction remaining (FTotal) of diesel fuel predicted by using the 
variable-temperature model with temperature data collected every 2 
minutes, every 1 hour, every 5 hours, every 12 hours, and the running 
average temperature (Figure 2.6A). The experimental fraction remaining of 
diesel fuel based on the average change in mass was 0.8253. The error 
between the predicted and experimental FTotal values is shown. In addition, 
the error between the predicted FTotal values using the 2-min temperature 
interval compared to the longer intervals is shown.

Time Interval Predicted % Error from Predicted FTotal % Error from 
FTotal using 2-min Time Interval aExperimental FTotal

2 min 0.8672  0.00 5.07

1 h 0.8672  0.01 5.08

5 h 0.8658 -0.15 4.91

12 h 0.8688  0.19 5.27

100 h Average 0.8711  0.46 5.55

a % error = (FTotal,pred ‒FTotal,exp)/FTotal,exp × 100, where FTotal,pred and FTotal,exp are the predicted and experimental 
total fraction remaining, respectively.
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has a similar composition and distribution of compounds compared to diesel fuel, 
but contains more short-chain n-alkanes ranging from n-nonane to n-heptadecane 
(Figure 2.7). As a result, kerosene is more volatile than diesel fuel. Marine fuel 
stabilizer contains mostly branched and cyclic alkanes, with very low abundances 
of n-alkanes and aromatic compounds (Figure 2.8). Marine fuel stabilizer is more 
volatile than either diesel fuel or kerosene.

For kerosene, the experimental fraction remaining based on the average change 
in mass before and after evaporation was FTotal = 0.6171. The predicted total frac-
tion remaining using the fixed-temperature model at 20°C (Equations 2.9 and 2.12, 
parameters given in Table 2.2) was FTotal = 0.7095, which represents 15.0% error 
compared to the experimental value. The predicted total fraction remaining using 
the variable-temperature model (Equations 2.10 and 2.12, parameters given in Table 
2.3) was FTotal = 0.6819, which represents 10.5% error compared to the experimental 
value. For marine fuel stabilizer, the experimental fraction remaining based on the 
change in mass was FTotal = 0.5576. The predicted fraction remaining using the fixed-
temperature model was FTotal = 0.5798, representing 3.97% error. The predicted 
fraction remaining using the variable-temperature model was FTotal = 0.5187, repre-
senting -6.97% error. These low errors demonstrate the success of the kinetic models 
in predicting the total fraction remaining for a range of petroleum fuels and products.

2.3.1.3 Comparison to Other Evaporation Models
The accuracy of the fixed- and variable-temperature models developed in this work 
has been demonstrated in Sections 2.3.1.1 and 2.3.1.2. For further validation, the 
total fraction remaining predicted by these models was compared to existing evapo-
ration models. Among these, the empirical models of Fingas [11, 36] demonstrate a 
linear dependence on temperature (T, °C) and a square-root dependence on time (t, 
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FIGURE 2.7 Experimental chromatograms of kerosene (A) prior to evaporation and (B) after 
evaporation at 20°C for 100 h. The n-alkanes are labeled, together with selected compounds: 
(1) 4-methyldecane, (2) pentyl cyclohexane, (3) methylundecane, (4) 2,6-dimethylundecane, 
(5) hexyl cyclohexane, and (6) 2,6,10-trimethyldecane.
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FIGURE 2.8 Experimental chromatograms of marine fuel stabilizer (A) prior to evaporation 
and (B) after evaporation at 20°C for 100 h. The n-alkanes are labeled, together with selected 
compounds: (1) 4-methyldecane, (2) 5-methyldecane, (3) 2-methyldecane, (4) 3-methyldecane, 
(5) 2,6-dimethylundecane, and (*) unidentified branched alkanes.

min) for short-term evaporation of diesel fuels. The percent of diesel fuel evaporated 
(%Evap) is given by

 %Evap A B T t= + ×( )  (2.13)

where the regression coefficients (A and B) are determined from experimental mea-
surements. While the empirical models of Fingas are very simple, Jones [20] demon-
strated that they provide results similar to those of other common evaporation models, 
including the analytical model [17, 18] and the pseudo-component model [16, 20].

For diesel fuel evaporated at 20°C for 100 h, the experimental total fraction 
remaining was FTotal = 0.8176 (Section 2.3.1.1). Using the empirical models of Fingas 
(Equation 2.13, parameters given in Table 2.5 [11]), the predicted fraction remain-
ing ranges from FTotal = 0.8141 for short-term evaporation of southern diesel to FTotal = 
0.4036 for short-term evaporation of northern Anchorage diesel (Table 2.5). The 
short-term southern diesel model is the most accurate, with error of -0.42% rela-
tive to the experimental value. The short-term diesel Mobile 1997 and diesel 2002 
models also perform well, with errors of -5.16% and -4.21%, respectively. However, 
the short-term regular stock diesel and Anchorage diesel models have significantly 
greater errors of -41.2% and -50.6%, respectively. These results emphasize the 
importance of knowing the type, source, and/or chemical composition of the fuel for 
accurate prediction using empirical models. 

Using the fixed-temperature model (Equations 2.9 and 2.12, parameters given 
in Table 2.2), the predicted fraction remaining is FTotal = 0.8542, representing 
4.49% error relative to the experimental value. Using the variable-temperature 
model (Equations 2.10 and 2.12, parameters given in Table 2.3), the predicted 
fraction remaining is FTotal = 0.8347, representing 2.09% error. The error using 
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the kinetic models is similar to that using the best empirical models of Fingas 
(Table 2.5). Moreover, the kinetic models do not require information regarding the 
type or source of the fuel and can be used to predict both short-term and long-term 
evaporation.

2.3.2 PreDiCtion of ComPounD Distribution

The fixed- and variable-temperature kinetic models can also be used to predict the 
chromatogram, or the distribution of individual compounds in the petroleum sample, 
after evaporation. This distribution provides more detailed and specific information 
about the chemical composition of the residue, which can aid in the assessment of 
environmental impact and evaluation of remediation strategies.

2.3.2.1 Diesel Fuel
To test and validate the fixed- and variable-temperature models of McIlroy et al., 
the evaporation of diesel fuel at 20°C for 100 h, described in Section 2.3.1.1, serves 
as a representative example. The fraction remaining at each retention index is 
calculated using the fixed-temperature model (Equation 2.9, parameters given in 
Table 2.2) and using the variable-temperature model (Equation 2.10, parameters 
given in Table 2.3). The fraction-remaining curves (Figure 2.5, solid line and 
dashed line, respectively) are multiplied by the chromatogram of the unevaporated 
diesel fuel (Figure 2.4A) to generate the predicted distribution of compounds after 
evaporation. The predicted chromatograms (Figure 2.9) are then compared to the 
experimental chromatogram (Figure 2.4B) obtained by evaporation of diesel at 
20°C for 100 h.

TABLE 2.5
Empirical models of Fingas for predicting short-term (< 5 days) evaporation 
of diesel fuel [11]. The empirical regression coefficients of Equation 2.13 are 
given, together with the predicted evaporation (%Evap) and corresponding 
predicted total fraction remaining (FTotal). The experimental fraction 
remaining of diesel fuel based on the average change in mass was 0.8176, 
and the error between the predicted and experimental FTotal values is shown.

Model A B Predicted 
%Evap 

Predicted 
FTotal 

% Error from 
Experimental FTotal

 a

Diesel Mobile 1997  0.03 0.013 22.46 0.7754 -5.16

Diesel 2002  0.02 0.013 21.69 0.7831 -4.21

Diesel—Regular Stock  0.31 0.018 51.90 0.4810 -41.2

Diesel—Southern -0.02 0.013 18.59 0.8141 -0.42

Diesel—Anchorage  0.51 0.013 59.64 0.4036 -50.6

a % error defined in Table 2.4
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A visual comparison of the predicted and experimental chromatograms of diesel 
fuel suggests a relatively high degree of similarity. To quantify the similarity, the 
Pearson product-moment correlation (PPMC or r) coefficient is used
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where A
I T ,1

 and A
I T ,2

 represent the GC-MS abundance at each retention index and 

A1 and A2  represent the mean abundance in the two chromatograms being compared. 
PPMC coefficients in the range of 1.00 ≥ |r| ≥ 0.80 indicate strong correlation, 0.80 
> |r| ≥ 0.50 indicate moderate correlation, and 0.50 > |r| ≥ 0.00 indicate weak to no 
correlation [42].

For comparison of the experimental chromatogram (Figure 2.4B) and the pre-
dicted chromatogram using the fixed-temperature model (Figure 2.9A), the PPMC 
coefficient is r = 0.9962 over the retention index range IT = 800—2200. Similarly, 
for comparison of the experimental chromatogram (Figure 2.4B) and the pre-
dicted chromatogram using the variable-temperature model (Figure 2.9B), the 
PPMC coefficient is r = 0.9981 over the same retention index range. These high 
correlation coefficients indicate that the experimental and predicted chromato-
grams are strongly correlated, and that the fixed- and variable-temperature models 
can accurately predict the distribution of individual compounds after evaporation. 
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FIGURE 2.9 Predicted chromatograms of diesel fuel after evaporation at 20°C for 100 h 
calculated by using (A) the fixed-temperature model (Equation 2.9, parameters given in Table 
2.2) and (B) the variable-temperature model (Equation 2.10, parameters given in Table 2.3). 
The n-alkanes are labeled.
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Upon closer inspection, differences between the experimental and predicted chro-
matograms can be seen in the retention index range IT = 1100—1200, where the 
fraction-remaining curve changes signifcantly (Figure 2.5). In this retention index 
range, the PPMC coeffcients are r = 0.9897 and 0.9934 for the fxed- and vari-
able-temperature models, respectively. Although the experimental and predicted 
chromatograms are still strongly correlated, the PPMC coeffcients are slightly 
lower than those over the complete range of IT = 800—2200. Hence, it is benef-
cial to examine the accuracy of the predicted concentration or GC-MS abundance 
of individual compounds throughout the retention index range. 

Using the n-alkanes as representative compounds, the percent error was calculated 
from the experimental and predicted chromatograms of diesel fuel and the results are 
summarized in Table 2.6. The error in concentration/abundance for most n-alkanes is 

TABLE 2.6 
Accuracy of predicted concentration or GC-MS abundance of n-alkanes in 
chromatograms of diesel fuel (Figures 2.4 and 2.9), kerosene (Figures 2.7 
and 2.10), and marine fuel stabilizer (Figures 2.8 and 2.11) evaporated at 
20°C for 100 h. 

% Error in Concentration/Abundance a 

Diesel Kerosene Marine Fuel 
Stabilizer 

Compound IT Fixed T Variable T Fixed T Variable T Fixed T Variable T 
Model b Modelc Modelb Modelc Modelb Model c 

n-Undecane 1100  9.98 -13.3 37.6 8.55 24.7 -1.63 

n-Dodecane 1200 -7.89 -15.8 2.34 -6.43 -0.79 -9.29 

n-Tridecane 1300 -9.10 -10.6 -6.35 -9.45 -2.25 -5.51 

n-Tetradecane 1400 -5.91 -7.10 -4.03 -5.24 -4.08 -5.29 

n-Pentadecane 1500 -8.09 -8.52 -0.47 -0.94 -2.40 -2.86 

n-Hexadecane 1600 -2.11 -2.29 -1.31 -1.48 0.99 0.81 

n-Heptadecane 1700 -2.94 -3.00 10.4 10.4 

n-Octadecane 1800 -1.87 -1.90 

n-Nonadecane 1900 -0.11 -0.12 

n-Eicosane 2000  1.79  1.79 

MAPE.d  4.98  6.44 8.93 6.06 5.60 4.23 

a T% error = (A I pred ‒ )/AI  × 100, where A I pred  and AI  are the predicted andT AI T T T ,exp, ,exp ,exp , 
experimental GC-MS abundances, respectively, at the appropriate retention index (peak apex). 

b McIlroy fxed-temperature model (Equations 2.6 and 2.9) with parameters given in Table 2.2. 
McIlroy variable-temperature model (Equations 2.8 and 2.10) with parameters given in Table 2.3. 

d Mean absolute percent error (MAPE) = T ‒ T )/AI T  | × 100/n, where n is the Σ | (AI pred AI ,exp ,exp, 
number of measurements. 

c 
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negative, as would be expected. Because their experimental rate constants are below 
the regression lines in Figure 2.2A, the rate constants are overestimated by the kinetic 
models and the concentration/abundance in the chromatogram is underestimated. 
The error is generally greater for more volatile n-alkanes and decreases progressively 
with increasing carbon number. This trend is consistent with the PPMC coeffcients, 
as discussed above. The errors range from -9.10% to 9.98% for the fxed-tempera-
ture model and from -15.8% to 1.79% for the variable-temperature model. Although 
the range of errors is similar, those for the variable-temperature model are typically 
more negative (or, equivalently, less positive) than those for the fxed-temperature 
model. This trend can also be explained by the regression lines shown in Figure 2.2A, 
where the fxed-temperature model (solid line) is lower than the variable-tempera-
ture model (dashed line) at 20°C. The variable-temperature model predicts a higher 
rate constant and, hence, a faster evaporation rate at each retention index, leading to 
more negative error in concentration/abundance. The mean absolute percent error 
is 4.98% and 6.44% for the fxed- and variable-temperature models, respectively. 
Hence, the predictive accuracy of both kinetic models is appropriate for detailed 
evaluation of the concentration/abundance of individual compounds in diesel fuels 
undergoing evaporative weathering. 

Finally, the variable-temperature model was tested for evaporation of diesel 
under conditions of fuctuating temperature, as described in Section 2.3.1.1 [40]. 
The fraction-remaining curve was calculated at the average temperature (17.1°C) 
and fnal time (100 h) for the fuctuating temperature profle shown in Figure 2.6A. 
As described previously, the fraction remaining curve was multiplied by the chro-
matogram of the unevaporated diesel fuel to generate the predicted distribution of 
compounds after evaporation. The predicted chromatogram was then compared to 
the experimental chromatogram obtained by evaporation of diesel in the fuctuating-
temperature experiment. The PPMC coeffcient was r = 0.9878 over the retention 
index range IT = 800—2200, indicating that the predicted and experimental chro-
matograms were strongly correlated. This demonstrates that the average temperature 
can be used to predict the distribution of individual compounds under conditions of 
fuctuating temperature with results similar to those at constant temperature. 

2.3.2.2 Kerosene and Marine Fuel Stabilizer 
The fxed- and variable-temperature kinetic models can also be used to predict the 
distribution of compounds in kerosene and marine fuel stabilizer after evaporation 
at 20°C for 100 h, as described in Section 2.3.1.2. After prediction of the chromato-
grams, both visual and quantitative comparisons were performed. 

For kerosene, the experimental chromatogram (Figure 2.7B) and the predicted 
chromatograms (Figure 2.10) show good visual agreement. The PPMC coeffcients 
for the fxed- and variable-temperature models are r = 0.9834 and 0.9893, respec-
tively, indicating strong correlation to the experimental chromatogram in the reten-
tion index range IT = 800—2200. However, as for diesel fuel, volatile compounds in 
the range IT = 1100—1200, where the fraction-remaining curve changes signifcantly 
(Figure 2.5), appear to have higher abundance in the predicted chromatograms. In 
this retention index range, the PPMC coeffcients are r = 0.9535 and 0.9663 for the 
fxed- and variable-temperature models, respectively. Although these PPMC values 
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are lower than those observed for diesel fuel over the same retention index range, 
they still indicate strong correlation.

For marine fuel stabilizer, the experimental chromatogram (Figure 2.8B) and 
the predicted chromatograms (Figure 2.11) also show good visual agreement, with 
trends similar to those observed for kerosene. The PPMC coefficients for the fixed- 
and variable-temperature models are r = 0.9824 and 0.9867, respectively, again 
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FIGURE 2.10 Predicted chromatograms of kerosene after evaporation at 20°C for 100 h 
calculated by using (A) the fixed-temperature model (Equation 2.9, parameters given in Table 
2.2) and (B) the variable-temperature model (Equation 2.10, parameters given in Table 2.3). 
The n-alkanes are labeled, other compounds identified in Figure 2.7.
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FIGURE 2.11 Predicted chromatograms of marine fuel stabilizer after evaporation at 20°C 
for 100 h calculated by using (A) the fixed-temperature model (Equation 2.9, parameters 
given in Table 2.2) and (B) the variable-temperature model (Equation 2.10, parameters given 
in Table 2.3). The n-alkanes are labeled, other compounds identified in Figure 2.8.
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indicating strong correlation to the experimental chromatogram in the retention 
index range IT = 800—2200. For the volatile compounds in the range IT = 1100— 
1200, the PPMC coeffcients are r = 0.9542 and 0.9610 for the fxed- and variable-
temperature models, respectively, similar to those observed for kerosene. Overall, 
the PPMC coeffcients for kerosene and marine fuel stabilizer are comparable to 
those for diesel fuel (Section 2.3.2.1), confrming that the kinetic models can accu-
rately predict the distribution of compounds in other complex petroleum products. 

It is also benefcial to examine the accuracy of predicting the concentration/ 
abundance of individual compounds in these fuels. Using the n-alkanes as repre-
sentative compounds, the percent error was calculated from the experimental and 
predicted chromatograms of kerosene and marine fuel stabilizer and the results are 
summarized in Table 2.6. As for diesel fuel, the fxed- and variable-temperature 
models have similar error. The error is greatest for n-undecane and decreases pro-
gressively with increasing carbon number, in many cases becoming negative. The 
mean absolute percent error for the fxed- and variable-temperature models for kero-
sene (8.93% and 6.06%, respectively) and marine fuel stabilizer (5.60% and 4.23%, 
respectively) is comparable to that for diesel fuel (4.98% and 6.44%, respectively). 
These low errors demonstrate the success of the kinetic models in predicting the dis-
tribution of compounds and the concentration/abundance of individual compounds 
in a range of petroleum products. 

2.3.3 PreDiCtion of evaPoration time 

The kinetic models developed in this work can also be used to estimate the evapora-
tion time from the chromatograms of an unevaporated and evaporated fuel sample. 
This is useful in environmental applications to estimate the time at which the spill or 
discharge occurred, which may be helpful for source identifcation or apportionment. 
To do so, a fraction-remaining curve is created sequentially for each possible evapo-
ration time. The fraction-remaining curve is multiplied by the normalized abun-
dance at the corresponding retention index in the chromatogram of the unevaporated 
fuel sample to generate the predicted chromatogram (as discussed in Section 2.3.2). 
The predicted chromatogram at each possible evaporation time is compared to the 
chromatogram of the evaporated fuel sample using PPMC coeffcients (Equation 
2.14), and a characteristic graph of PPMC versus evaporation time is then prepared. 
The time at which the PPMC coeffcient reaches a maximum value is considered to 
be the best estimate of the evaporation time. 

This approach was tested using three samples of diesel fuel evaporated at 20°C 
for 100 h [40]. For each replicate, the fxed- and variable-temperature models were 
used to predict chromatograms of samples evaporated over the time range 0—500 
h at 1-h intervals. At each time, the predicted chromatogram was compared to the 
experimental chromatogram and the PPMC coeffcient was calculated. A represen-
tative example of the distribution of PPMC coeffcients as a function of predicted 
evaporation time is shown in Figure 2.12. 

As the evaporation time is incremented, the PPMC coeffcient increases, reaches 
a maximum value, and then decreases. The curve for the fxed-temperature model is 
shifted to longer evaporation times than the curve for the variable-temperature model. 
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FIGURE 2.12 Pearson product-moment correlation (PPMC) coeffcient between an experi-
mental chromatogram of diesel fuel evaporated at 20°C for 100 h and the predicted chromato-
gram based on the fxed- and variable-temperature models calculated for evaporation time t = 
0—500 h at 1-h intervals. The curve for the fxed-temperature model (solid line) maximizes 
at t  = 137 h (r  = 0.9982), whereas the curve for the variable-temperature model (dashed max max 

line) maximizes at tmax = 108 h (rmax = 0.9982). 

This trend can be explained by the regression lines shown in Figure 2.2A, where the 
fxed-temperature model (solid line) is lower than the variable-temperature model 
(dashed line) at 20°C. As noted previously, the variable-temperature model pre-
dicts a higher rate constant and, hence, a faster evaporation rate at each retention 
index. Accordingly, this model reaches the maximum PPMC coeffcient in a shorter 
evaporation time. Because the same replicate chromatograms are compared, both 
models have the same maximum PPMC coeffcient (rmax = 0.9982), but the variable-
temperature model maximizes at tmax = 108 h, whereas the fxed-temperature model 
maximizes at tmax = 137 h. As the actual evaporation time was 100 h, the error for this 
replicate is 8% for the variable-temperature model and 37% for the fxed-tempera-
ture model. For all replicates, the average predicted evaporation time is tmax = 108 h 
(8% error), with a range of 100—112 h for the variable-temperature model, and 
t 136 h (36% error), with a range of 127—142 h for the fxed-temperature model. max = 

The average PPMC coeffcient was rmax = 0.9983, with a range of 0.9980—0.9986. 
This demonstrates the utility of the kinetic models in estimating the length of time 
a petroleum fuel sample has been evaporating in the environment, given chromato-
grams of the original unevaporated fuel and the evaporated fuel. 

2.3.4 PreDiCtion of time to sPeCifiC fraCtion remaining 

The fxed- and variable-temperature kinetic models have been shown to accurately 
predict the evaporation time (Section 2.3.3) and can, therefore, be used to estimate the 
time required for the entire fuel to reach a specifc fraction remaining. Additionally, 
they can be used to estimate the time for an individual compound to reach a specifc 
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level, such as a lethal dose (LD50), lethal concentration (LC50), or limit of detection. 
This information is critical to assess safety at spill or discharge sites and to predict 
the persistence of an individual compound in the environment. 

Using the total fraction remaining (Equation 2.12) with either the fxed-temperature 
model (Equation 2.9, parameters given in Table 2.2) or variable-temperature model 
(Equation 2.10, parameters given in Table 2.3), numerical integration can be used to 
determine the time to reach a specifc fraction remaining [40]. A semi-logarithmic plot 
of the predicted fraction remaining versus evaporation time of diesel at 20°C is shown 
in Figure 2.13. For both kinetic models, the fraction remaining decreases rapidly for 
the frst day and into the frst week, then decreases more slowly. A plot such as this 
is useful in assessing temporal changes in the fuel due to evaporation. For example, 
using the variable-temperature model, 25% (FTotal = 0.75) of the total fuel is predicted 
to evaporate by approximately 240 h (10 days), and 50% (FTotal = 0.50) to evaporate by 
approximately 2400 h (100 days) at 20°C. 

A similar calculation can be performed for any individual compound in the fuel sam-
ple. For example, the BTEX compounds (benzene, toluene, ethylbenzene, and xylene) 
are among the most water-soluble components in petroleum fuels. Benzene is of par-
ticular interest because it is highly toxic with acute exposure and is carcinogenic and 
mutagenic with chronic, long-term exposure [43]. Benzene constitutes approximately 
1% of commercial gasoline by volume [44]. If 50 L of gasoline (a typical automobile 
gas tank) were discharged into a small stream, approximately 440 g of benzene would 
be released into the environment. In a water volume of 25,000 L, the initial concentra-
tion of benzene would be 17.5 mg/L. For rainbow trout, the lethal concentration (LC50) 
is 5.3 mg/L for 96 h [43]. The time until the concentration reaches below the LC50 

can be solved by using either the fxed-temperature model (Equation 2.9) or variable-
temperature model (Equation 2.10) for benzene (IT = 650 [45]). Using the variable-
temperature model, the time to reach the LC50 (FI T = 5.3/17.5 = 0.30) is approximately 
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FIGURE 2.13 The total fraction remaining for evaporation of diesel fuel predicted using 
the fxed-temperature model (solid line) and variable-temperature model (dashed line) over a 
total time of 10,000 h (approximately 1 year) at an average temperature of 20°C. 
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1 h and the time to reach 1% remaining (F  = 0.01) is approximately 4 h. While this 
I T 

is a simple example, it serves to demonstrate the utility of the model in predicting 
removal of a specifc compound from the environment by evaporation. 

2.3.5 summary 

The fxed- and variable-temperature kinetic models of McIlroy et al. [31, 32] offer 
many useful applications for environmental modeling. The rate constant can be uti-
lized to predict the fraction remaining of an individual compound as well as the 
fraction remaining of the entire fuel. At a constant evaporation temperature of 20°C 
and time of 100 h, the fraction remaining of diesel fuel was predicted with 2.09% 
error using the variable-temperature model, which is comparable to the best empiri-
cal models of Fingas [11]. However, unlike other models, the kinetic models can be 
directly applied to a wide range of other petroleum fuels. The fractions remaining 
of kerosene and marine fuel stabilizer were predicted with 10.5% and -6.97% error, 
respectively, using the variable-temperature model. More importantly, the fraction 
remaining can be predicted for fuctuating temperature conditions, an option that is 
not available with most existing models. 

From the fraction remaining of individual compounds, the fuel composition can 
be predicted after evaporation at a given temperature and time. This prediction is 
helpful in establishing the loss that would be expected due to evaporation alone, 
which can then be compared with actual loss to assess the effectiveness of remedia-
tion strategies. The models can also be used to estimate the evaporation time, from 
chromatograms of an unevaporated and evaporated fuel sample, or alternatively, to 
estimate the original fuel composition from the chromatogram of an evaporated 
sample and the evaporation time. Both of these predictions may be useful for source 
identifcation or apportionment of an environmental spill or discharge. Finally, the 
models can be used to estimate the evaporation time required to reach a specifc frac-
tion remaining for an individual compound or for the entire fuel. This prediction is 
useful for assessing hazards for cleanup workers or for determining the time to reach 
safe exposure levels, which is particularly important for toxic volatile compounds. 

2.4 FORENSIC APPLICATIONS 

The ability to predict evaporation has numerous potential applications in forensic sci-
ence, such as in the characterization of explosives, chemical warfare agents, and fre 
debris. Of these applications, fre debris analysis is perhaps the most routinely per-
formed in forensic science laboratories across the country and is the focus in this section. 

According to the United States National Fire Protection Association (NFPA), an 
average of 52,260 intentional fres were set annually in the fve-year period 2014— 
2018 [46]. Of these intentional fres, three in fve were set in residential proper-
ties and resulted in $815 million in property damage, 950 civilian injuries, and 400 
deaths. Ignitable liquids are commonly used as accelerants in intentional fres, with 
the result that evaporated residues of the liquids may remain in the resulting debris. 
As such, the goal of forensic fre debris analysis is to identify the presence of extrane-
ous liquids in debris collected from the scene of a suspicious fre. 
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Ignitable liquid residues in debris samples submitted to a laboratory are frst 
extracted using an acceptable method, such as passive-headspace extraction or sol-
vent extraction [47–49]. Extracts are routinely analyzed by GC-MS and the resulting 
chromatograms are compared to chromatograms of reference liquids for identifca-
tion. It is worth noting here that the goal is primarily to identify the chemical class 
of liquid present rather than a specifc liquid. Liquid classes are defned by ASTM 
International and include the gasoline, aromatic, isoparaffnic, and petroleum dis-
tillate classes, among others [50]. Liquids are further classifed based on carbon 
number range with ‘light’ liquids containing carbon numbers in the range C4—C9, 

‘medium’ containing C8—C13, and ‘heavy’ containing C9—C20+. As an example, 
a liquid containing an approximately Gaussian-shaped distribution of n-alkanes 
across the range C8—C13 with a lower abundance of aromatic compounds is defned 
as a medium petroleum distillate. 

Identifcation of liquids in debris samples based on direct comparison of the chro-
matogram to a reference collection is challenging due to the nature of the debris 
sample. Any liquid initially present is likely to be evaporated to some extent due to 
the heat of the fre, which results in different chemical composition compared to the 
corresponding unevaporated reference liquid [2]. The chromatogram of the debris is 
also further complicated by additional contributions from thermal degradation and 
pyrolysis of the substrate [2]. Such contributions are not present in the chromatogram 
of the reference liquid, which complicates direct comparison of the chromatograms. 

The challenges of evaporation and substrate contributions are routinely addressed 
in two ways. Reference collections of ignitable liquids typically include chromato-
grams of the liquids experimentally evaporated to different levels. Further, in 
addition to total ion chromatograms (TICs), extracted ion profles (EIPs) are also 
compared between the submitted sample and the reference collection. Extracted ion 
profles are generated for compound classes commonly present in ignitable liquids 
and are used to minimize or even eliminate substrate contributions [50]. 

As with any reference collection comparison, successful identifcation requires 
an extensive and suffciently representative reference collection. Unfortunately, with 
limited time and resources, it is not feasible to experimentally evaporate all liquids 
in the reference collection to a range of evaporation levels. As such, evaporated ver-
sions of a select number of liquids may be included in the reference collection, which 
also impacts the number of corresponding EIPs that can be generated for comparison. 
To avoid the time and expense associated with experimental evaporation of reference 
liquids, the kinetic model can be used to predict TICs and EIPs corresponding to dif-
ferent evaporation levels for any class of liquid. The ability to predict evaporation as 
a function of retention index is particularly advantageous for fre debris applications 
in which the identity of the sample liquid is typically not known initially. 

In this section, the kinetic model is frst applied to identify liquids experimen-
tally evaporated to different levels [51–55]. The accuracy of the model in predict-
ing evaporation of individual compounds is evaluated based on the mean absolute 
percent error (MAPE). The accuracy in predicting the chromatogram of the evapo-
rated liquid is subsequently evaluated using PPMC coeffcients to assess correlation. 
The model is then used to create a reference collection containing predicted chro-
matograms corresponding to various evaporation levels for 10 liquids representing 4 
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different chemical classes. Both same-source and different-source liquids are com-
pared to the reference collection to demonstrate identification. Finally, to demon-
strate more realistic applications, the model is used to identify ignitable liquids in 
fire debris samples [51, 52]. Given that these samples contain substrate contributions, 
the predicted reference collection is expanded to include EIPs of relevant compound 
classes. Thus, identification is based on TICs and EIPs, with the latter being used to 
increase confidence in identification in the presence of substrate contributions.

2.4.1 iDentifiCation of gasoline

Gasoline is the most common ignitable liquid used as an accelerant in intentional fires [2]. 
To identify gasoline in a fire debris sample, the chromatographic profile should contain 
o-, m-, and p-ethylmethylbenzene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene 
(C3-alkylbenzenes), along with naphthalene, 1-methylnaphthalene, 2-methylnaph-
thalene, and indanes [50]. While n-alkanes may be present, the actual content varies 
according to the brand and grade of gasoline. Nonetheless, when present, the concentra-
tion of any alkanes with a carbon number greater than C7 (n-heptane) should be less than 
that of the aromatic content [50].

2.4.1.1 Evaluation of the Kinetic Model to Predict Evaporation
A gasoline sample (Gas A) was collected from a local service station and first analyzed 
in the unevaporated state by GC-MS (Figure 2.14A) [53, 54]. Compounds present in 
the unevaporated sample included n-heptane (IT = 700), n-octane (IT = 800), toluene 

FIGURE 2.14 Representative chromatograms of gasoline (A) unevaporated, (B) evaporated 
to FTotal = 0.5 with experimental chromatogram (top) and predicted chromatogram (bottom), 
(C) evaporated to FTotal = 0.3 with experimental chromatogram (top) and predicted chromato-
gram (bottom), and (D) evaporated to FTotal = 0.1 with experimental chromatogram (top) and 
predicted chromatogram (bottom). The n-alkanes are labeled, together with selected com-
pounds: (1) toluene, (2) C2-alkylbenzenes, (3) C3-alkylbenzenes, (4) C4-alkylbenzenes, and 
(5) methylnaphthalenes.
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(IT = 750), C2-alkylbenzenes (IT = 845—876), C3-alkylbenzenes (IT = 939—1004), C4-
alkylbenzenes (IT = 1044—1172), and methylnaphthalenes (IT = 1270—1285). The 
unevaporated sample was then experimentally evaporated to nominal FTotal = 0.5, 0.3, 
and 0.1, which correspond to evaporation levels of 50, 70, and 90% by volume, respec-
tively (Figures 2.14B–D, top). At FTotal = 0.5, compounds characteristic of gasoline are 
still present (Figure 2.14B, top); however, at FTotal = 0.3, the abundance of compounds 
with IT < 900 is substantially reduced (Figure 2.14C, top) and, by FTotal = 0.1, all com-
pounds eluting in this range are completely evaporated (Figure 2.14D, top). 

Eklund et al. applied the fxed-temperature McIlroy model at 20°C (Equation 2.6, 
parameters given in Table 2.2) to predict chromatograms corresponding to each of the 
experimental FTotal levels [53]. The actual FTotal levels for the evaporated samples were 
calculated based on the area under the chromatogram relative to the area under the 
chromatogram of the unevaporated gasoline [53]. As such, for nominal FTotal = 0.5, 0.3, 
and 0.1, the actual FTotal values were 0.671, 0.425, and 0.133, respectively. The kinetic 
model was applied to the chromatogram of the unevaporated gasoline, changing the 
time t in Equation 2.9 to reach the actual FTotal levels (Equation 2.12) corresponding to 
the experimental samples. For example, to reach FTotal = 0.671, 0.425, and 0.133, time 
was set to t = 2.045 h, 9.13 h, and 87.3 h, respectively. 

The predicted chromatograms (Figures 2.14B–D, bottom) were then compared to 
the corresponding experimental chromatograms (Figures 2.14B–D, top) to evaluate 
the accuracy of the model in predicting evaporation of gasoline. Chromatograms 
were evaluated in two ways. First, PPMC coeffcients (Equation 2.14) were calcu-
lated to assess correlation between the predicted and experimental chromatograms, 
and second, the mean absolute percent error (MAPE, defned in Table 2.6) in pre-
dicting abundance of selected compounds was evaluated. The model accuracy in 
predicting evaporation of gasoline is summarized in Table 2.7. 

TABLE 2.7 
Accuracy of McIlroy fxed-temperature modela at 20°C in predicting 
evaporation of gasoline at three different FTotal levels. 

Nominal FTotal Mean PPMC Coeffcient MAPE (%) b 

0.5 0.9710 ± 0.0053 18.0 c 

0.3 0.9713 ± 0.0044 23.3 d 

0.1 0.9613 ± 0.0049 32.9 e 

a Equation 2.6, parameters given in Table 2.2 
b MAPE defned in Table 2.6 

MAPE calculated for 14 compounds across the range IT = 600—1159 (n-hexane to naphthalene) 
d MAPE calculated for 13 compounds across the range IT = 700—1159 (n-heptane to naphthalene) 
e MAPE calculated for 10 compounds across the range IT = 846—1159 (ethylbenzene to naphthalene). 

Note that the number of compounds included in MAPE calculation decreases due to evaporation at 
lower FTotal levels. 
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At each FTotal level, there is strong correlation between the experimental and pre-
dicted chromatograms, with PPMC coeffcients greater than 0.96. The MAPE, which 
represents the percent error in predicting the abundance of up to 14 compounds in 
gasoline, ranges from 18.0—32.9% for FTotal = 0.5—0.1, respectively. The increase 
in error is expected as FTotal level decreases due to extensive evaporation. At FTotal = 
0.1, the more volatile compounds have fully evaporated and less volatile compounds 
are present at substantially reduced abundance, resulting in higher overall error. 

These comparisons demonstrate the accuracy of the model to predict evaporation 
of gasoline, a liquid that is substantially more volatile than diesel and other liquids 
discussed thus far in this chapter. However, for all of the comparisons shown in this 
section, the predicted chromatogram was modeled to the same FTotal level as the 
experimental sample. While this approach enables a direct evaluation of predictive 
accuracy, it does not demonstrate the ability to use the model to identify given liq-
uids, which is of more practical use. 

2.4.1.2 Generation and Application of a Predicted Reference Collection 
Rather than predicting a chromatogram corresponding to a specifc FTotal level, the 
model can be applied to predict chromatograms corresponding to a range of FTotal 

levels. In essence, these predicted chromatograms form the basis of a predicted ref-
erence collection to which sample chromatograms can be compared for identifca-
tion purposes. 

To begin demonstrating this application, Eklund et al. collected four additional 
gasoline samples (Gasolines B—E) from local service stations over a six-month 
period, and each unevaporated gasoline was analyzed by GC-MS [53, 54]. Despite 
being distilled and refned from different sources of crude oil, transported in differ-
ent tankers, and collected from different pumps, there is a high degree of chemical 
similarity among the gasolines, as evidenced in Figure 2.15. In fact, of the chemi-
cal classes defned by ASTM International [50], gasoline is the most chemically 
similar. The fve gasolines all contain the characteristic compounds required for 
identifcation (e.g., toluene, C2-, C3-, and C4-alkylbenzenes, and methylnaphtha-
lenes), although there are differences in abundance ratios of specifc compounds. For 
example, in Gas E, the ratio of toluene (IT = 750) to m,p-xylene (IT = 855) is approxi-
mately 2:1, whereas in Gas B, these two compounds are present in an approximately 
1:1 ratio (Figure 2.15). 

Eklund et al. applied the fxed-temperature McIlroy model at 20°C (Equation 2.6, 
parameters given in Table 2.2) to the chromatograms of the fve unevaporated gaso-
lines (Gasolines A—E), changing t in Equations 2.9 and 2.12 to generate predicted 
chromatograms corresponding to levels of FTotal = 0.9—0.1 in 0.1 increments [54]. 
The resulting 45 predicted chromatograms (nine FTotal levels for each of fve gaso-
lines) constituted a predicted reference collection to which experimentally evapo-
rated gasolines (same-source and different-source) were compared [53, 54]. 

Representative chromatograms of the experimentally evaporated Gas A (Figure 
2.14B–D) were compared to the full predicted gasoline reference collection. The 
PPMC coeffcient was calculated for each pairwise comparison, with the maxi-
mum PPMC coeffcient being used to determine the predicted chromatogram 
deemed most similar to the experimental chromatogram. Figure 2.16 summarizes 
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FIGURE 2.15 Representative experimental chromatograms of fve gasolines (Gas 
A—E) in the unevaporated state. The n-alkanes are labeled, together with selected com-
pounds: (1) toluene, (2) C2-alkylbenzenes, (3) C3-alkylbenzenes, (4) C4-alkylbenzenes, and 
(5) methylnaphthalenes. 

the PPMC coeffcients calculated for comparison of Gas A experimentally evapo-
rated to FTotal = 0.5 compared to all predicted chromatograms in the reference 
collection. 

Similar trends are observed for comparison of the experimental chromatogram 
of Gas A at FTotal = 0.5 (Figure 2.14B) to predicted chromatograms of each gaso-
line. Strong correlation is observed for comparison of the experimentally evaporated 
liquid to each of the unevaporated liquids (r = 0.84—0.96 at FTotal = 1.0, high-
lighted in gray dashed box in Figure 2.16). As the FTotal represented by the predicted 
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FIGURE 2.16 Comparison of experimentally evaporated Gas A (FTotal = 0.5) to reference 
collection of gasolines A—E containing predicted chromatograms corresponding to FTotal = 
0.9—0.1 for each gasoline. Gasolines are labeled as follows: Gas A (●), Gas B (▲), Gas C (■), 
Gas D (♦), and Gas E (□). Gray dashed box highlights correlation between the chromatogram 
of each unevaporated gasoline and the experimentally evaporated Gas A. Gray solid box 
highlights correlation between the predicted chromatogram corresponding to FTotal = 0.1 for 
each gasoline to the experimentally evaporated Gas A. Red highlighting indicates the maxi-
mum correlation observed, which occurs for comparison of the experimental Gas A to the 
predicted chromatogram corresponding to Gas A at FTotal = 0.8. 

chromatograms decreases to FTotal = 0.6—0.7, correlation to the experimentally 
evaporated sample increases. The maximum correlation (r = 0.9931) is observed 
for comparison to the predicted chromatogram of Gas A at FTotal = 0.8 (highlighted 
with red outline in Figure 2.16). As the FTotal level represented by the predicted chro-
matograms decreases further to FTotal = 0.1, correlation decreases (r = 0.16—0.28, 
highlighted in gray solid box in Figure 2.16), indicating weak to no correlation. 

For Gas A experimentally evaporated to FTotal = 0.3 (Figure 2.14C), the maxi-
mum PPMC coeffcient (r = 0.9916) occurs for comparison to predicted Gas A at 
FTotal = 0.5. Further, for Gas A experimentally evaporated to FTotal = 0.1 (Figure 
2.14D), the maximum PPMC coeffcient (r = 0.9808) occurs for comparison to pre-
dicted Gas A at FTotal = 0.2. Thus, for all of the experimental chromatograms, the 
correct liquid (Gas A) is identifed, even with four additional gasolines in the refer-
ence collection. 

While successful identifcation of the experimentally evaporated gasoline was 
achieved, this example demonstrates same-source comparison; that is, the reference 
collection contains chromatograms that were predicted from the same gasoline that 
was used for the experimental evaporations. From a practical standpoint, the liquid 
present in a submitted sample is unlikely to be from the same source as the cor-
responding liquid in the reference collection. As such, it is important to investigate 
different-source comparisons to demonstrate the practical utility of the predicted 
reference collection. 
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To demonstrate the potential for different-source comparisons, a sixth gasoline (Gas 
F) was experimentally evaporated for comparison to the gasoline predicted reference 
collection [54]. For Gas F experimentally evaporated to FTotal = 0.5 and 0.3, the highest 
correlation (r = 0.9838 and 0.9863) is observed to Gas B at FTotal levels = 0.9 and 0.7, 
respectively. For Gas F experimentally evaporated to FTotal = 0.1, the highest correlation 
(r = 0.9812) is observed to predicted Gas A at FTotal = 0.2. Thus, the predicted gasoline 
reference collection can be used to identify an evaporated gasoline originating from a 
source not included in the reference collection. 

2.4.2 iDentifiCation of liquiDs from Different ChemiCal Classes 

2.4.2.1 Evaluation of the Kinetic Model to Predict Evaporation 
Although gasoline is the most commonly encountered accelerant, the kinetic model 
can also be applied to identify evaporated ignitable liquids from different chemical 
classes. Capistran et al. selected nine additional liquids representing the aromatic, 
isoparaffnic, oxygenated, and petroleum distillate classes and analyzed the liquids 
in the unevaporated state by GC-MS [51, 52]. Representative chromatograms of one 
liquid (paint remover, paint thinner, lacquer thinner, and torch fuel) from each class 
are shown in Figure 2.17. 

Based on the criteria in ASTM E1618 for liquid class identifcation, paint remover 
(Figure 2.17A) is considered an aromatic liquid due to the presence of only aromatic 
compounds [50]. The liquid contains ethylbenzene, m,p-xylene, and o-xylene, that 
elute across the range IT = 800—900, further sub-classifying the liquid as a light aro-
matic [50]. Paint thinner (Figure 2.17B) contains branched alkanes eluting across the 
range IT = 900—1200 and is classed as a medium isoparaffnic liquid [50]. Lacquer 
thinner (Figure 2.17C) contains aromatic compounds (substituted benzenes) but also 
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FIGURE 2.17 Representative experimental chromatograms of unevaporated liquids repre-
senting different chemical classes (A) paint remover, aromatic class, (B) paint thinner, isoparaf-
fnic class, (C) lacquer thinner, oxygenated class, and (D) torch fuel, petroleum distillate class. 
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contains two oxygenated compounds (2-butanone and ethyl acetate) that elute before 
the substituted benzenes. As such, this liquid is a member of the oxygenated rather 
than aromatic class [50]. Finally, torch fuel (Figure 2.17D) contains n-alkanes that 
elute across the range IT = 1000—1500 in an approximately Gaussian-shaped distri-
bution. Based on this composition, torch fuel is defned as a heavy petroleum distil-
late [50]. 

Each of the nine liquids was experimentally evaporated to levels of FTotal = 0.5, 
0.3, and 0.1 and analyzed by GC-MS [51, 52]. The kinetic model was used to 
predict chromatograms for each liquid corresponding to these FTotal levels. The 
predicted chromatograms were then compared to the experimental chromatograms 
to evaluate the model accuracy in predicting evaporation of liquids from different 
chemical classes. Representative comparisons are summarized in Table 2.8. For 
all comparisons of experimental and predicted chromatograms, strong correlation 
is observed with PPMC coeffcients of r = 0.8372—0.9904. In general, for each 
liquid, correlation decreases slightly as FTotal level decreases. This trend is attributed 
to more extensive evaporation resulting in lower abundance of the remaining com-
pounds, which increases error in prediction. 

The lowest correlation (r = 0.8372) is observed for comparison of experimental 
and predicted chromatograms of lacquer thinner (oxygenated class) at FTotal = 0.3. 
The correlation is lower because the model overpredicts the extent of evaporation of 
the two oxygenated compounds, which are present at signifcant abundance in the 
experimental chromatogram. However, it is worth noting that the comprehensive 
kinetic model was developed based on experimentally determined rate constants 
for compounds representing four different chemical classes (n-alkanes, branched 
alkanes, alkyl benzenes, and polycyclic hydrocarbons) and did not include oxygen-
ated compounds [31]. As such, the discrepancy in predicting evaporation of these 

TABLE 2.8 
Mean PPMC coeffcient for comparison of experimental to predicted 
chromatograms for liquids representing different ASTM classes. 

ASTM Class Representative Ignitable Liquid Nominal FTotal Mean PPMC Coeffcient 

Aromatic Paint remover 0.5 0.9758 ± 0.0032 
0.3 0.9710 ± 0.0004 
0.1 0.9400 ± 0.0174 

Isoparaffnic Paint thinner 0.5 0.9855 ± 0.0027 
0.3 0.9904 ± 0.0005 
0.1 0.9661 ± 0.0049 

Oxygenated Lacquer thinner 0.5 0.9351 ± 0.0004 
0.3 0.8372 ± 0.0134 
0.1 0.9026 ± 0.0029 

Petroleum Torch fuel 0.5 0.9480 ± 0.0006 
Distillate 0.3 0.9807 ± 0.0012 

0.1 0.9432 ± 0.0057 
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two compounds is due to inaccuracy in modeling compound classes not included in 
model development. Nonetheless, strong correlation is still observed between pre-
dicted and experimental chromatograms for lacquer thinner. The expansion of the 
model to include additional compound classes is the focus of future work in this area. 

The predictive accuracy demonstrated here highlights a unique advantage of the 
kinetic model. Chromatograms are predicted as a function of IT such that the identity 
of compounds within the liquid does not need to be known in advance. As a result, 
and as demonstrated here, the model is readily applicable to chemically diverse liq-
uids with similar predictive accuracy. 

2.4.2.2 Generation and Application of a Predicted Reference 
Collection 

Having demonstrated accuracy in predicting evaporation of a series of chemically 
diverse ignitable liquids, the model was then applied to generate an extensive ref-
erence collection of predicted chromatograms [51, 52]. Following the procedure 
described in Section 2.4.1.2, the model was applied to chromatograms of 10 une-
vaporated liquids (one gasoline and nine liquids from different ASTM classes) to 
generate predicted chromatograms corresponding to levels of FTotal = 0.9—0.1 in 
increments of 0.1. Thus, the complete predicted reference collection contained 90 
chromatograms representing 10 liquids at nine different FTotal levels. 

Four additional single-blind samples (Liquids A—D) were experimentally evapo-
rated to levels of FTotal = 0.5, 0.3, and 0.1 to evaluate the potential of the predicted 
reference collection for identifcation purposes. The liquids were selected to evalu-
ate different-source comparisons and to provide a more realistic evaluation of the 
utility of the reference collection. Chromatograms of the experimentally evaporated 
liquids were compared to each predicted chromatogram (all liquids at all FTotal lev-
els), calculating PPMC coeffcients for each comparison. The evaporated liquid was 
subsequently identifed as belonging to the class to which the maximum PPMC coef-
fcient was observed. 

To illustrate, consider the chromatogram of Liquid A experimentally evaporated 
to FTotal = 0.5 (Figure 2.18A). This liquid primarily contains branched alkanes, rang-
ing from C8—C12 and eluting across the range IT = 800—1200. On comparison to the 
reference collection, Liquid A at FTotal = 0.5 exhibits strong correlation to predicted 
chromatograms of paint thinner, which is an isoparaffnic liquid (Figure 2.18B). 
Specifcally, the maximum correlation (r = 0.9800) is observed for comparison of the 
evaporated liquid to the predicted chromatogram at FTotal = 0.6 (Table 2.9). Weak to 
no correlation is observed for comparison of Liquid A to all other liquids at all FTotal 

levels in the predicted reference collection. Similarly, at levels of FTotal = 0.3 and 0.1, 
maximum correlation is observed for comparison to predicted chromatograms of 
paint thinner (r = 0.9844 and 0.9638 for FTotal = 0.3 and 0.1, respectively). As such, 
Liquid A is identifed as an isoparaffnic liquid. This is the correct class identifca-
tion, as Liquid A is a different-brand paint thinner that is chemically similar to the 
paint thinner represented in the reference collection. 

The chromatogram of Liquid B at FTotal = 0.5 is dominated by n-alkanes (C12— 
C15, IT = 1200—1500) that elute in an approximately Gaussian-shaped distribution 
(Figure 2.19A). At each experimental FTotal level, maximum correlation is observed 
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FIGURE 2.18 Identifcation of Liquid A (A) experimental chromatogram corresponding 
to FTotal = 0.5 and (B) comparison of experimental chromatogram to the predicted reference 
collection. In (B), liquids are denoted as follows: aromatic class (green), with fruit tree spray 
(●) and paint remover (♦); oxygenated class (gray), with lacquer thinner (●); isoparaffnic class 
(blue), with paint thinner (●), fabric protector (♦), and lighter fuid (■); petroleum distillate 
class (black), with charcoal lighter fuid (●), paint thinner (♦), and torch fuel (■); and gasoline 
class (red, ●). Maximum correlation indicated by *. 
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TABLE 2.9 
Identifcation of experimentally evaporated liquids through comparison to 
predicted reference collection (different-source comparisons). 

Experimentally Nominal Comparison to Predicted Reference Collection 
Evaporated 
Liquid 

FTotal Level 
Max. PPMC 
Coeffcient 

Predicted 
FTotal Level 

Liquid with 
Maximum 

Class Identifcation 

Correlation 

Liquid A 0.5 0.9800 0.6 Paint thinner Isoparaffnic 
0.3 0.9844 0.4/0.3 Paint thinner Isoparaffnic 
0.1 0.9638 0.1 Paint thinner Isoparaffnic 

Liquid B 0.5 0.9545 0.3 Torch fuel Petroleum distillate 
0.3 0.9199 0.1 Torch fuel Petroleum distillate 
0.1 0.8094 0.1 Torch fuel Petroleum distillate 

Liquid C 0.5 0.8977 0.2 Paint remover Aromatic 
0.3 0.8452 0.1 Lacquer thinner Oxygenated 
0.1 0.7858 0.1 Paint remover Aromatic 

Liquid D 0.5 0.8805 0.2 Lighter fuid Isoparaffnic 
0.3 0.9065 0.2 Lighter fuid Isoparaffnic 
0.1 0.9293 0.1 Lighter fuid Isoparaffnic 
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FIGURE 2.19 Identifcation of Liquid B (A) experimental chromatogram corresponding 
to FTotal = 0.5, (B) comparison of experimental chromatogram to the predicted reference col-
lection, and (C) chromatogram of same-brand paint thinner included in reference collection, 
highlighting compositional differences. Color and symbol designations in (B) are described 
in Figure 2.18. Maximum correlation indicated by *. 
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FIGURE 2.19 (Continued) 

for comparison to predicted chromatograms of torch fuel, which is a petroleum dis-
tillate (Table 2.9). Little to no correlation is observed for comparisons to any other 
liquid in the reference collection (Figure 2.19B). Thus, based on these comparisons, 
Liquid B is identifed as a petroleum distillate. 

Although this is the correct classifcation, it raises an important point. Liquid B is 
a paint thinner sample, and the same-brand paint thinner was included in the refer-
ence collection. However, the chemical profles of the two paint thinners are mark-
edly different. While both liquids are defned as petroleum distillates, compounds 
in Liquid B elute over the range IT = 1200—1500, whereas those in the reference 
collection sample elute across the range IT = 900—1200 (Figure 2.19C). As such, 
Liquid B is defned as a heavy petroleum distillate while the reference collection 
sample is defned as a medium petroleum distillate. These two samples were pur-
chased in Michigan and New Hampshire. Despite being the same brand with similar 
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packaging, differences in composition may be due to differences in chemical regu-
lation between the two states. It is also worth noting that the strongest correlation 
was observed between Liquid B and torch fuel, the only heavy petroleum distillate 
represented in the reference collection. 

The chromatogram of Liquid C at FTotal = 0.5 contains only ethylbenzene, m,p-
xylene, and o-xylene that elute in the range IT = 800—900 (Figure 2.20A). Maximum 
correlation (r = 0.8977) is observed for comparison to the predicted chromatogram 
of paint remover at FTotal = 0.2 (Figure 2.20B and Table 2.9). Paint remover is an 
aromatic liquid that contains the same C2-alkylbenzenes present in similar ratios 
as Liquid C, resulting in strong correlation between the two liquids. It is worth not-
ing that there is no correlation between Liquid C and the predicted chromatograms 
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FIGURE 2.20 Identifcation of Liquid C (A) experimental chromatogram corresponding 
to FTotal = 0.5 and (B) comparison of experimental chromatogram to the predicted reference 
collection. Color and symbol designations in (B) are described in Figure 2.18. Maximum cor-
relation indicated by *. 
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of fruit tree spray, which is the other aromatic liquid in the reference collection. 
However, fruit tree spray contains C3- and C4-alkylbenzenes that elute across the 
range IT = 900—1100. Given that there is no similarity in the compounds present, 
there is no correlation between these two liquids. 

From Figure 2.20B, there is strong correlation (r = 0.8265) between Liquid C and 
the predicted chromatogram of lacquer thinner at FTotal = 0.1. However, correlation 
to the predicted lacquer thinner chromatograms decreases as FTotal level increases 
(r = 0.1722 at FTotal = 0.9). While lacquer thinner does contain C2-alkylbenzenes, 
this liquid also contains 2-butanone and ethyl acetate (IT = 572 and 601, respec-
tively), resulting in classifcation as an oxygenated rather than aromatic liquid. At 
higher FTotal levels, the presence of 2-butanone and ethyl acetate decreases correla-
tion to Liquid C. However, as FTotal level decreases (greater extent of evaporation), 
2-butanone and ethyl acetate are evaporated, leaving only the C2-alkylbenzenes 
in lacquer thinner and, therefore, increasing correlation to Liquid C. Similarly, 
there is moderate correlation between Liquid C and predicted chromatograms of 
gasoline at FTotal = 0.8—0.4. The correlation is again due to the presence of the 
C2-alkylbenzenes in both liquids; however, correlation is only moderate (0.80 > 
|r| ≥ 0.50) due to the presence of additional compounds in gasoline (e.g., toluene, 
C3-alkylbenzenes, C4-alkylbenzenes, etc.) that are not present in Liquid C. There 
is no correlation between Liquid C and any other liquid in the predicted reference 
collection at any FTotal level (Figure 2.20B). 

Similar trends are observed when chromatograms of Liquid C evaporated to 
FTotal = 0.3 and 0.1 are compared to the predicted reference collection. There is 
strong correlation to paint remover (aromatic class), strong correlation to lacquer 
thinner (oxygenated class) at FTotal = 0.1, moderate correlation to gasoline at FTotal = 
0.8—0.4, and no correlation to any other liquid in the reference collection. While 
comparison of Liquid C at FTotal = 0.3 yields strong correlation to both paint remover 
and lacquer thinner (r = 0.8342 and 0.8452, respectively), the maximum correlation 
is to lacquer thinner. In cases such as this, where there is similar high correla-
tion to liquids representing different classes, the trend in PPMC coeffcients can 
be evaluated further. For lacquer thinner, PPMC coeffcients consistently decrease, 
indicating moderate to weak correlation as FTotal levels increase from 0.1—0.9. This 
trend suggests the presence of additional volatile compounds in lacquer thinner that 
decrease correlation to the liquid of interest. In contrast, for paint remover, strong 
correlation is observed across all FTotal levels. Thus, based on these comparisons 
and evaluation of the PPMC coeffcients, Liquid C is correctly classed as an aro-
matic liquid at each FTotal level investigated. 

The chromatogram of Liquid D at FTotal = 0.5 contains n-alkanes, branched 
alkanes, and cyclic alkanes that elute across the range IT = 700—900 (Figure 2.21A). 
At each FTotal level, maximum correlation is observed for comparisons to lighter 
fuid (r = 0.8805, 0.9065, and 0.9293 for FTotal = 0.5, 0.3, and 0.1, respectively) 
(Figure 2.21B for FTotal = 0.5). Lighter fuid is an isoparaffnic liquid that contains 
primarily branched alkanes. However, Liquid D is naphtha, which is a naphthenic-
paraffnic liquid due to the additional presence of cyclic alkanes. Because this 
class is not represented in the reference collection, maximum correlation occurs 
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FIGURE 2.21 Identifcation of Liquid D (A) experimental chromatogram corresponding 
to FTotal = 0.5 and (B) comparison of experimental chromatogram to the predicted reference 
collection. Color and symbol designations in (B) are described in Figure 2.18. Maximum cor-
relation indicated by *. 

to the most chemically similar class, which in this case is the isoparaffnic class. 
This example is included to demonstrate that while chemical information can be 
obtained, successful class identifcation requires extensive and representative refer-
ence collections. 

2.4.3 iDentifiCation of liquiDs in fire Debris samPles 

Application of the kinetic model to generate a predicted reference collection of 
TICs for the identifcation of liquids has been demonstrated in the previous sec-
tions. However, these examples focused only on the identifcation of experimentally 
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TABLE 2.10. 
Fragment ions characteristic of 
major compound classes in ignitable 
liquids used to generate extracted 
ion profles. 

Compound Class Characteristic Ions 

Alkane m/z 57, 71, 85, 99 

Aromatic m/z 91, 105, 119 

Cycloalkane m/z 55, 69, 83, 97 

Indane m/z 117, 131, 145, 159 

Polynuclear aromatic m/z 128, 142, 156 
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FIGURE 2.22 Extracted ion profles (EIPs) representing the alkane class in gasoline (A) 
experimental EIP and (B) predicted EIP. 

evaporated liquids. To be of practical use in forensic laboratories, the identifca-
tion of liquids in the presence of substrate contributions must also be considered, 
as demonstrated by Capistran et al. [51, 52]. Due to the chromatographic com-
plexity of typical fre debris samples, EIPs are often considered in addition to the 
TIC for identifcation purposes. Profles representing major compound classes 
present in ignitable liquids are generated from the TIC using the characteristic 
ions defned in ASTM E1618 [50], which are summarized in Table 2.10. The EIPs 
offer increased selectivity and, depending on the chemical nature of the substrate, 
may minimize or even eliminate substrate contributions.  The kinetic model can 
be applied to predict EIPs of the characteristic compound classes and thereby 
generate a predicted EIP reference collection similar to that described for TICs 
(Section 2.4.2.2). 
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2.4.3.1 Evaluation of the Kinetic Model to Predict Extracted 
Ion Profles of Characteristic Compound Classes 
Before developing reference collections of predicted EIPs, it is important to again 
evaluate the predictive accuracy of the kinetic model for this purpose [51, 52]. As 
an example, consider the experimental alkane EIP of gasoline in Figure 2.22. This 
profle was generated from the TIC of unevaporated gasoline using the ions charac-
teristic of the alkane class (m/z 57, 71, 85, and 99, Table 2.10). 

Capistran et al. applied the fxed-temperature McIlroy model at 20°C (Equation 
2.6, parameters given in Table 2.2) to this EIP to generate predicted alkane EIPs 
for gasoline [51, 52]. As before, EIPs corresponding to different FTotal levels were 
generated by changing the time t in Equations 2.9 and 2.12. Here, time was set to 
t = 0.7, 1.9, and 33.8 h-1 to generate alkane EIPs corresponding to nominal FTotal = 
0.5, 0.3, and 0.1, respectively. Alkane profles were also generated from the TICs of 
each experimentally evaporated gasoline corresponding to the same nominal FTotal 

levels. The predicted and experimental EIPs were then compared using PPMC coef-
fcients to evaluate correlation (Figure 2.22B). Extracted ion profles representing the 
aromatic, cycloalkane, indane, and polynuclear aromatic compound classes within 
gasoline were also generated and compared to the corresponding experimental pro-
fles in a similar manner (Table 2.11). 

For each EIP and across all FTotal levels, strong correlation is observed between 
predicted and experimental profles, with correlation in the range of r = 0.9512— 
0.9973 (Table 2.11). The lowest correlation is observed for comparisons of the 
cycloalkane profle. However, this compound class is present at low abundance, and, 

TABLE 2.11 
Comparison of predicted and experimental extracted ion profles 
representing different compound classes within gasoline. 

Compound Class FTotal Level 

Alkane 0.5 
0.3 
0.1 

Aromatic 0.5 
0.3 
0.1 

Cycloalkane 0.5 
0.3 
0.1 

Indane 0.5 
0.3 
0.1 

Polynuclear aromatic 0.5 
0.3 
0.1 

Mean PPMC Coeffcient 

0.9733 ± 0.0103 
0.9943 ± 0.0007 
0.9661 ± 0.0100 

0.9753 ± 0.0164 
0.9983 ± 0.0013 
0.9941 ± 0.0003 

0.9512 ± 0.0190 
0.9647 ± 0.0073 

– 

0.9928 ± 0.0036 
0.9940 ± 0.0026 
0.9918 ± 0.0043 

0.9952 ± 0.0017 
0.9951 ± 0.0015 
0.9973 ± 0.0005 

— Indicates no signifcant profle at this FTotal level 
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in fact, gasoline at FTotal = 0.1 did not contain a signifcant cycloalkane profle for 
comparison. Nonetheless, strong correlation is observed, which demonstrates the 
accuracy of the model in predicting EIPs in addition to TICs. 

With the accuracy in predicting EIPs demonstrated, the next step was to gener-
ate a predicted reference collection of EIPs. As such, alkane, aromatic, indane, and 
polynuclear aromatic profles were generated from the TIC of each unevaporated 
liquid used in the reference collection described in Section 2.4.2.2. It is worth not-
ing here that not all liquids have EIPs for all compound classes. For example, paint 
remover, which is an aromatic liquid, does not have an associated alkane profle 
due to the lack of this compound class within the liquid. The fnal EIP reference 
collection contained a total of 24 profles, each at nine different FTotal levels (FTotal = 
0.9—0.1 in 0.1 increments), across four compound classes. 

2.4.3.2 Application of Predicted Reference Collections 
The utility of the predicted TIC and EIP reference collections was evaluated using 
chromatograms of debris collected from large-scale burns, which were conducted at 
the New England Fire Investigation Seminar at St. Anselm College in Manchester, 
New Hampshire [51, 52]. Two large containers (approximately 2.4 m x 4.9 m) were 
furnished with carpeting, drapes, and furniture to resemble a small living space. 
Approximately 5 mL of gasoline was poured in several locations throughout each 
container and then set alight. The fre was allowed to burn for approximately 10 
minutes until past fashover and then extinguished with water. Samples of debris 
were collected from each burn cell in unlined metal paint cans and transported to 
the laboratory for analysis [51, 52]. 

Ignitable liquid residues were extracted from the collected debris samples follow-
ing the passive-headspace extraction method detailed in ASTM E1412 [49]. Extracts 
were then analyzed by GC-MS to generate the TIC and, using the characteristic ions 
listed in Table 2.10, to generate the EIPs of relevant compound classes. The TIC and 
EIPs were then compared to the relevant predicted reference collection to identify 
the class of liquid present, which was determined based on the strongest correlation. 

2.4.3.2.1 Burn Sample A 
In the frst burn cell, a sample of burned carpet with no ignitable liquid present was 
collected in addition to the debris sample. The burned carpet sample contains pri-
marily branched and cyclic alkanes that elute across the range IT = 800—1500, in 
addition to styrene (IT = 872) and acetophenone (IT = 1033) (Figure 2.23A). The TIC 
for Burn Sample A indicates the presence of toluene (IT = 750), C2-alkylbenzenes (IT 

= 845—875), C3-alkylbenzenes (IT = 938—1004), 2-methylnaphthalene (IT = 1271), 
and 1-methylnaphthalene (IT = 1284) (Figure 2.23B). These compounds are charac-
teristic of gasoline identifcation; however, the TIC also indicates the presence of sty-
rene (IT = 872) and estragole (IT = 1172) that originate from the fre debris substrate. 
Styrene is present in the TIC of the burned carpet, while estragole is a component in 
turpentine oil, which is used for furniture and other wood treatments. 

The TICs of the burned carpet and of Burn Sample A were compared to the 
predicted reference collection generated in Section 2.4.2.2. For the burned carpet, 
PPMC coeffcients for comparison to the predicted reference collection are less than 
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0.4 (Figure 2.23C), indicating weak correlation to all liquids at all FTotal levels. In 
contrast, for Burn Sample A, the maximum correlation (r = 0.8389) is observed for 
comparison to the predicted chromatogram of gasoline at FTotal = 0.2 (Figure 2.23D). 
As FTotal increases further, correlation to gasoline decreases to r = 0.3742 at FTotal = 
0.9. This trend is consistent with evaporation of the more volatile compounds present 
in gasoline, particularly toluene and C2-alkylbenzenes. At FTotal = 0.9, these com-
pounds are present at relatively high abundance in the predicted chromatogram, and 
as FTotal decreases, so too does the abundance of these compounds. The fre debris 
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FIGURE 2.23 Identifcation of liquid in Burn Sample A based on total ion chromatograms 
(TICs) (A) experimental chromatogram of burned carpet, (B) experimental chromatogram of 
Burn Sample A, (C) comparison of burned carpet to predicted reference collection, and (D) 
comparison of Burn Sample A to predicted reference collection. In (B), substrate contribu-
tions are denoted as follows: (1) styrene and (2) estragole. Color and symbol designations in 
(C) and (D) are described in Figure 2.18. Maximum correlation indicated by *. 
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FIGURE 2.23 (Continued) 

sample contains relatively low abundance of these compounds, such that the highest 
correlation is observed for comparison to a predicted chromatogram representing 
an advanced state of evaporation (FTotal = 0.2). It is also worth noting here that the 
maximum coeffcient is lower than observed in Section 2.4.1.2 for different-source 
comparisons of gasoline (e.g., r = 0.9812—0.9863 for comparison of Gas F to the 
gasoline reference collection). Lower correlation is expected here due to the addi-
tional presence of substrate contributions (i.e., styrene and estragole) and combus-
tion products in the fre debris sample that are not present in the reference collection 
chromatograms. 

Burn Sample A also indicates moderate correlation to fruit tree spray, which 
is an aromatic liquid (Figure 2.23D). However, in contrast to the trend described 
above, correlation to this liquid remains relatively constant across the FTotal range 
(r = 0.7093 at FTotal = 0.2 to r = 0.6601 at FTotal = 0.9). The moderate correlation 
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observed is due to the common presence of C3-alkylbenzenes eluting across the 
range IT = 900—1100 in the fre debris sample and fruit tree spray. Due to their 
lower volatility, these compounds are less affected by evaporation than toluene and 
the C2-alkylbenzenes. As a result, there is consistent, albeit lower, correlation of the 
fre debris sample to fruit tree spray than to gasoline. Comparison of Burn Sample 
A with all other liquids at all FTotal levels in the predicted reference collection yields 
PPMC coeffcients less than 0.4, indicating weak to no correlation. 

While comparison to the predicted TIC reference collection indicates the pres-
ence of gasoline in Burn Sample A, the EIPs can be used to increase confdence in 

0 

0.5 

N
O

R
M

A
LI

Z
E

D
 A

B
U

N
D

A
N

C
E

 A 
B

en
za

ld
eh

yd
e 

C
 4 -

al
ky

lb
en

ze
ne A
ce

to
ph

en
on

e 

500 600 700 800 900 1000 1100 1200 1300 1400 

RETENTION INDEX 

0 

10 

20 

30 

N
O

R
M

A
LI

Z
E

D
 A

B
U

N
D

A
N

C
E

 B 

Toluene 

C2 -
alkylbenzenes 

C3-alkylbenzenes 

C4-alkylbenzenes 

Methyl-
naphthalenes 

500 600 700 800 900 1000 1100 1200 1300 1400 

RETENTION INDEX 

FIGURE 2.24 Identifcation of liquid in Burn Sample A based on extracted ion profles 
(EIPs) (A) experimental aromatic EIP of burned carpet, (B) experimental aromatic EIP of 
Burn Sample A, (C) comparison of burned carpet aromatic EIP to predicted reference collec-
tion, and (D) comparison of Burn Sample A aromatic EIP to predicted reference collection. 
Color and symbol designations in (C) and (D) are described in Figure 2.18. Maximum cor-
relation indicated by *. 
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FIGURE 2.24 (Continued) 

the identifcation. As an example, consider the aromatic EIP of both the burned car-
pet and of Burn Sample A (Figures 2.24A and B). The aromatic EIP of the burned 
carpet does not display a signifcant aromatic content and, when compared to the 
reference collection, displays no correlation with the aromatic EIP of any liquid at 
any FTotal level (Figure 2.24C). In contrast, the aromatic EIP of Burn Sample A dis-
plays the highest correlation to gasoline (r = 0.8686) predicted at FTotal = 0.3, indicat-
ing advanced evaporation in the burn sample (Figure 2.24D). Correlation between 
the burn sample and gasoline decreases as FTotal increases, which is consistent with 
evaporation of the volatile compounds, as noted previously. Although not strictly 
necessary, evaluation of the aromatic EIP serves to increase confdence in the iden-
tifcation of gasoline in Burn Sample A. It should also be noted here that the gaso-
line used in this burn cell was a different source than that included in the reference 
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collection, further demonstrating the broad applicability of the predicted reference 
collections. 

2.4.3.2.2 Burn Sample B 
Total ion chromatograms of an unburned wood fooring sample and a debris sample 
collected in this burn cell are shown in Figure 2.25. The unburned wood fooring 
sample contains primarily a substituted cycloalkene (IT = 930), β-pinene (IT = 969), 
along with hexanal, nonanal, and decanal (IT = 775, 1083, and 1174, respectively) 
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FIGURE 2.25 Identifcation of liquid in Burn Sample B based on total ion chromatograms 
(TICs) (A) experimental chromatogram of unburned wood subfooring, (B) experimental 
chromatogram of Burn Sample B, (C) comparison of unburned wood subfooring to predicted 
reference collection, and (D) comparison of Burn Sample B to predicted reference collection. 
Color and symbol designations in (C) and (D) are described in Figure 2.18. Maximum cor-
relation indicated by *. 
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FIGURE 2.25 (Continued) 

(Figure 2.25A). The TIC of Burn Sample B is remarkably similar and is dominated 
by these substrate contributions (Figure 2.25B). The burn sample also contains tolu-
ene, C2-, C3-, and C4-alkylbenzenes, although these compounds are not in the ratios 
typically observed in gasoline. When the TICs of the unburned wood fooring and 
the burn sample are compared to the predicted reference collection (Figures 2.25C 
and D, respectively), there is no correlation with any liquid at any FTotal level. As such, 
given the extensive substrate interferences in the TIC of Burn Sample B, identifca-
tion of any liquid present is not possible. 

Extracted ion profles corresponding to the alkane, aromatic, and indane classes 
were subsequently generated from the TIC of the burn sample. Compounds in the 
alkane EIP include hexanal, nonanal, and decanal, along with the n-alkanes C8—C12 

(Figure 2.26A). The aromatic profle contains compounds consistent with gasoline 
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(toluene, C2-, C3, and C4-alkylbenzenes) (Figure 2.26B), while the indane profle 
contains indane, methylindane, and branched indanes (Figure 2.26C). 

The alkane EIP from Burn Sample B was frst compared to the predicted alkane 
EIPs (Figure 2.26D). For most comparisons, PPMC coeffcients are less than 0.5, 
which indicates weak to no correlation. Weaker correlation is expected for these com-
parisons due to the extensive substrate contributions present in the sample. Despite 
such contributions, the highest correlation (r = 0.5336) is observed for comparison of 
the burn sample profle to the alkane EIP for gasoline corresponding to FTotal = 0.1. 
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FIGURE 2.26 Identifcation of liquid in Burn Sample B using extracted ion profles (EIPs) 
(A) alkane EIP of Burn Sample B, (B) aromatic EIP of Burn Sample B, (C) indane EIP of 
Burn Sample B, (D) comparison of alkane EIP to predicted alkane EIP reference collection, 
(E) comparison of aromatic EIP to predicted aromatic EIP reference collection, and (F) com-
parison of indane EIP to predicted indane EIP reference collection. Color and symbol desig-
nations in (D), (E), and (F) are described in Figure 2.18. Maximum correlation indicated by *. 
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FIGURE 2.26 (Continued) 

As FTotal increases, correlation decreases, which is consistent with evaporation of the 
more volatile compounds in gasoline, as noted previously. For the other liquids in 
the predicted reference collection, there is consistently weak to no correlation to the 
burn sample profle across all FTotal levels (Figure 2.26D). 

The aromatic profle of burn sample B also shows weak to no correlation when 
compared to the aromatic EIP predicted reference collection (Figure 2.26E). The high-
est correlation (r = 0.3370) occurs for comparison to gasoline at FTotal = 0.5. As before, 
correlation to gasoline decreases as FTotal increases, consistent with evaporation of 
more volatile compounds. Higher correlation is also observed for comparisons to fruit 
tree spray (aromatic class, r = 0.2829 at FTotal = 0.5) and to paint thinner (petroleum 
distillate class, r = 0.3186 at FTotal = 0.9) than to any other liquid in the reference col-
lection. However, correlation to fruit tree spray remains relatively constant across the 
FTotal range (Figure 2.26E). In contrast, correlation to paint thinner increases as FTotal 

increases due to higher aromatic content in this liquid at higher FTotal values. 
Only two liquids in the predicted reference collection contain a signifcant abundance 

of indanes: gasoline and fruit tree spray (Figure 2.26F). The indane profle of Burn 
Sample B displays weak yet consistent correlation to the corresponding profle of fruit 
tree spray across all FTotal levels (r = 0.3767 at FTotal = 0.1 to r = 0.3447 at FTotal = 0.9). 
However, for gasoline, increasing correlation is observed as FTotal increases, reaching a 
maximum correlation of r = 0.5880 at FTotal = 0.9. This trend is opposite to that described 
above for comparison of the aromatic profles. However, in this case, the indanes are con-
siderably less volatile than the aromatic compounds and, thus, are less affected by evapo-
ration. As such, these compounds remain in relatively high abundance in the burn sample, 
resulting in higher correlation to predicted profles corresponding to higher FTotal levels. 

Overall, despite extensive substrate interferences present in Burn Sample B, 
comparisons to the predicted EIP reference collections give some indication of the 
presence of gasoline. Such identifcation was not apparent based on the TIC alone, 
for which there was no correlation with any liquid in the reference collection. The 
alkane and aromatic EIP comparisons provide evidence for the possible presence of 
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gasoline, with correlation trends consistent with those expected due to evaporation of 
volatiles. However, the indane profle is perhaps the most informative. Of all 10 liq-
uids in the reference collections, only two generated signifcant indane profles. And, 
of these two liquids, higher correlation was observed for comparison to gasoline. In 
addition, the correlation trends observed are consistent with those expected for less 
volatile compounds. Thus, all three EIPs indicate the presence of gasoline in Burn 
Sample B and demonstrate the potential to exploit the chemical selectivity offered in 
a predicted EIP reference collection for identifcation purposes. 

2.4.4 summary 

In this section, the fxed-temperature kinetic model of McIlroy et al. was demon-
strated to accurately predict the evaporation of chemically diverse ignitable liquids 
[31]. Total ion chromatograms and extracted ion profles were predicted and suc-
cessfully used to identify liquids in fre debris samples collected from large-scale 
burns. Applying the model in this manner offers several advantages for future imple-
mentation in forensic fre debris analysis. Evaporation is predicted as a function of 
retention index, such that the chemical composition of the liquid need not be known 
in advance. The model is used to predict chromatograms corresponding to any FTotal 

level based only on chromatograms of unevaporated liquids. As such, predicted TICs 
and EIPs can be generated rapidly and used to create extensive and representative 
reference collections in a time- and resource-effcient manner. Finally, sample chro-
matograms are compared to each predicted chromatogram in the reference collection 
using correlation coeffcients, thereby offering an objective, statistically based evalu-
ation of the chromatograms for identifcation. Thus, in forensic science, the kinetic 
model can be employed to identify highly evaporated ignitable liquids in fre debris 
samples to indicate intentional rather than accidental fres. 

2.5 CONCLUSIONS 

Many existing models of evaporation rely on physical properties, such as boiling 
point, vapor pressure, or rate constant. For models that consider the sample as a 
single component, these properties must be experimentally measured as a bulk value 
from the original sample and the change in these properties with time must be esti-
mated. For models that consider the sample as individual components or pseudo-
components, each component must be identifed and its properties must be known, 
predicted, or measured. This limits the number of components that can realistically 
be accommodated for complex samples. 

The kinetic model of evaporation developed in this work represents an important 
and timely advance. Because the model is based on the gas chromatographic retention 
index, a surrogate property, it is not necessary to identify the individual compounds and 
to determine their physical properties. Moreover, the kinetic foundation provides an 
accurate time and temperature basis. The kinetic model can be applied in several differ-
ent modes. First, the regression parameters can be evaluated for a specifc compound 
class (e.g., n-alkanes, branched and cyclic alkanes, alkyl benzenes, or polycyclic aro-
matics) or they can be evaluated comprehensively for all classes. Second, the regression 
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parameters can be evaluated for fxed-temperature or for variable-temperature condi-
tions. The specifc mode is selected according to the complexity of the modeling prob-
lem and the desired accuracy, allowing greater fexibility in the application. 

Despite the advantages of using GC retention indices mentioned above, there are 
limitations to this approach. Accurate modeling requires that all components in the 
sample be suffciently volatile for analysis within the normal range of GC operating 
temperatures. For nonpolar stationary phases such as polydimethylsiloxane, the tem-
perature range is approximately 35—325°C, allowing for analysis of compounds in the 
range of n-pentane to n-triacontane or higher. Although this includes a wide range of 
refned petroleum products, it does not cover the entire range needed for crude oils. To 
extend the range to less volatile compounds, it will be necessary to use high-temperature 
GC columns and instrumentation to achieve temperatures of 400°C or higher. Similarly, 
to extend the range to more volatile compounds, it will be necessary to use cryogenic 
GC instrumentation to achieve temperatures less than 35°C. 

In addition to the extended volatility range, it is important to explore a broader 
range of chemical compounds. Thus far, the applications have focused on modeling 
evaporation of petroleum fuels, whose primary constituents are hydrocarbons. The 
inclusion of more polar compounds, such as those containing heteroatoms (oxygen, 
nitrogen, sulfur), is necessary for industrial applications to foods, beverages, and fra-
grances as well as for homeland security and law enforcement applications to explo-
sives and chemical warfare agents. These extensions will require models for specifc 
compound classes, combined with suitable extracted ion profles from the GC-MS 
data. With these modifcations, the kinetic model can be extended to a wider range of 
potential applications. 
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3.1 INTRODUCTION 

High-performance liquid chromatography (HPLC) is the most widely applied ana-
lytical technique in contemporary drug quality control (QC) laboratories. Numerous 
positive features characterizing the technique contribute to its broad feld of usage, 
although it possesses two main drawbacks: the time-consuming analysis and the 
consumption of high amounts of toxic organic solvents in comparison to other ana-
lytical techniques (1). The separation is mainly performed in the reversed-phase 
mode (RP-HPLC). Among different organic solvents, acetonitrile is labeled a gold 
standard in pharmaceutical analysis due to its outstanding physicochemical proper-
ties and chromatographic effciency. On the other hand, acetonitrile is toxic, volatile, 
and fammable. Hence, the ecological acceptability of HPLC methods is an impor-
tant issue that should be improved through the so-called process of “greening” the 
method. Developing green RP-HPLC methods should be considered an obligation 
owing to the negative infuence of toxic organic solvents on human health and nature 
itself, especially when working in the pharmaceutical industry, which is designated 
to be in the service of human health. To exclude or reduce the amount of toxic 
organic solvents, different strategies could be used. One of the available approaches, 
which is relatively frequently used at present, is the addition of cyclodextrin (CD) 
in the mobile phase. In this way, CD-modifed HPLC systems are created. CDs can 
form inclusion complexes with various analytes, improving their solubility in the 
aqueous phase and thus reducing their retention times. Consequently, the consump-
tion of the toxic organic solvent is reduced, increasing the ecological acceptability 
of the developed HPLC method (2–5). This concept is also benefcial considering 
the overall price of the analytical methods and the fact that toxic organic solvents 
are partially or fully substituted with ecologically acceptable CD, a substance of 
semi-natural origin. 

The presented concept could be extended to incorporate sustainability in the feld 
of separation science, from the stage of method development to routine analysis, 
through the quantitative structure retention relationship (QSRR) modeling approach. 
The QSRR models represent the methods of mathematical modeling, commonly built 
by employing different types of machine learning algorithms. Earlier, the QSRR mod-
els linked solely the molecular characteristics (molecular descriptors) of the examined 
analytes to their retention. Using this approach, the retention could be predicted toward 
molecular descriptors at only one defned set of experimental conditions. When work-
ing with chromatographic methods, different experimental conditions largely infu-
ence retention and should therefore be included in the modeling. The QSRR models 
that include both experimental conditions and molecular descriptors at the same time 
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are denoted as mixed models, characterized by great predictive ability and utility in 
separation science (6, 7). In that respect, this book chapter is aimed at presenting the 
possibilities of building and employing QSRR models in CD-modifed HPLC meth-
ods, followed by investigating their potential utility in different areas of application. 
When dealing with CD-modifed RP-HPLC, challenges arise from its complexity. 
Namely, CDs from the mobile phase can be adsorbed onto the stationary phase and/ 
or form inclusion complexes with analytes in the mobile phase. The CD-analyte com-
plex is dynamic and characterized by certain equilibrium and stability constant values, 
depending on the type of CD and the analyte’s structure. Taking into consideration 
all the presented facts, it is known that the solute can be distributed between the bulk 
mobile phase, stationary phase, CD in the mobile phase, and CD adsorbed onto the 
stationary phase, making the modeling in these kinds of chromatographic systems 
more complicated in comparison to regular RP-HPLC (8, 9). The complexity of the 
chromatographic system indicates the associated complexity of the modeling, which 
is refected in the need for descriptors able to describe the formed inclusion com-
plexes. These descriptors, labeled as complex association constants, could be included 
in the QSRR model along with experimental parameters and molecular descriptors 
(10). The apparent utility of the proposed model is in predicting the retention of 
examined model substances that can be further used in the selection of the optimal 
chromatographic conditions and the calculation of stability constant values of formed 
inclusion complexes (10, 11). In this way, the in silico approach is implemented in the 
development of CD-modifed HPLC methods, replacing the time-consuming experi-
mentation prior to verifcation of selected chromatographic conditions and method 
validation. Special attention should be paid to the possibility of utilizing these mod-
els in the determination of complex stability constants and accompanying thermody-
namic parameters in general. Moreover, these properties could be of great importance 
in other scientifc felds, apart from chromatography. For example, a CD forms inclu-
sion complexes with various compounds, and in this way, the chemical stability of 
compounds could be improved as well as its water solubility, odor, taste, and other 
undesired properties. Therefore, CDs are employed in different segments of chemis-
try, pharmacy, food industry, etc. (12). 

Sections 1 and 2 of the book chapter provide a concise overview of CD structures 
and present their infuence on the formation of the inclusion complexes with differ-
ent kinds of hydrophobic analytes. Analytes can encompass inorganic and organic 
molecules as well as bio-molecules. Special focus was placed on the practical and 
theoretical knowledge regarding the retention mechanisms and equilibria existing 
in CD-modifed HPLC systems as a convenient introduction to retention modeling 
in this kind of chromatographic system, which is explained in Section 4.4. Prior to 
modeling, an overview of the analytical techniques used in the characterization of 
CD inclusion complexes is given in Section 3. Furthermore, Section 4.1 provides 
a detailed presentation of the molecular descriptors mostly applicable in model-
ing retention in HPLC, as well as complex association constants that can properly 
describe the formed inclusion complexes in CD-modifed HPLC. In addition, the 
machine learning techniques were presented and discussed in terms of their utility 
and contribution in building good predictive QSRR models. One of the last sections 
(Section 5) summarizes the key experimental fndings regarding the utility of the 
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obtained QSRR models in retention prediction and evaluation of optimal conditions 
of the chromatographic method, as well as thermodynamic parameters of complex-
ation. A special theoretical discussion of possible benefts, drawbacks, and future 
perspectives of the presented approach is also presented. 

This is only the beginning of the investigation in this broad, cutting-edge scien-
tifc feld in which more questions have been asked than answered so far. Therefore, a 
new direction in research is potentially open. Using the QSRR models to predict the 
optimal chromatographic conditions and thermodynamic parameters of CD-analyte 
complexation is bringing a new dimension of greening and sustainability into separa-
tion science. The procurement of the retention factors by in silico methods, instead 
of performing the experiments, offers a great possibility of time, nature, and cost 
savings. 

3.2 PROPERTY ASSESSMENT OF CD, FORMED 
INCLUSION COMPLEXES, AND CD-MODIFIED 
CHROMATOGRAPHIC SYSTEMS 

3.2.1 struCture anD ProPerties of CD 

3.2.1.1 Brief Historical Overview 
CDs were discovered by chance in 1891 by Viller. He isolated a material that “forms 
beautiful radiate crystals” after starch digestion with B. amylobacter. At that moment, 
it was named “cellulosine.” Later, in 1903, Schardinger described the process of 
digesting starch with microorganisms, which resulted in the formation of two differ-
ent crystalline products, dextrin A and B, characterized by a lack of reducing power 
similar to the “beautiful radiate crystals” described by Viller. Schardinger named the 
crystalline products “crystallized dextrin α” and “crystallized dextrin β” and discov-
ered that they formed characteristic iodine adducts after the addition of iodine-iodide 
solution. Structural insight was provided by Freudenberg and colleagues in the 1930s. 
They discovered that crystalline structures contain only α-1,4-glycosidic bounds and 
further on, in 1936, postulated the cyclic structure of the dextrins. The exact deter-
mination of the structure of α-dextrin and β-dextrin was enabled in 1942, employing 
X-ray crystallography. It revealed that α-CD and β-CD were formed of 6 and 7 glu-
copyranosyl units, respectively. One of the most important discoveries regarding CDs 
was in 1948, when Freudenberg et al. recognized the possibility of CDs to form inclu-
sion complexes. Soon, in 1953, Freudenberg, Camer, and Plieinger utilized this ability 
and applied CDs in drug formulations for protection from oxidation, enhancement 
of solubility, and stabilization of volatile substances. This was a historical moment, 
and it demonstrated the non-toxicity of CDs. Afterwards, the utilization of CDs was 
carried forward, and their areas of application were simultaneously broadened. At the 
same time, other types of CDs were found, including γ-CD, δ—CD, ζ—CD, ξ—CD, 
η-CD, consisting of 9 to 12 glucopyranosyl units. These CDs with a larger degree of 
polymerization were named large-ring cyclodextrins (LR-CD) and at frst consisted of 
up to 13, while afterwards up to 45 glucopyranosyl units. All the described CDs are 
of semi-natural origin. Synthetic derivatives were later obtained in order to highlight 
the desired properties of CD. In that sense, hydroxypropyl-β-CD and γ-CD, randomly 
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methylated α- and β-CDs, maltosyl-β-CD, acetylated CD, and others were synthesized 
and widely used in different application areas (13, 14). 

From 1950 to 1970, the research was oriented toward the investigation of CD 
structures and their inclusion complexes, along with their application in catalysis and 
enzyme models. Since 1970, CDs have been applied in different sectors of industries, 
such as the pharmaceutical and food industries. In these industries, CDs found differ-
ent purposes, from odor and taste masking ability to enantioselective catalysts, drug 
carriers, and additives in separation science. Among separation techniques, CDs are 
widely used in gas chromatography (GC), HPLC, supercritical fuid chromatography 
(SFC), capillary electrophoresis (CE), and capillary electrochromatography (CEC). 
One of its prominent characteristics used in separation science is the so-called chiral 
or molecular recognition. Therefore, it is used in the separation of chiral compounds, 
in the frst-line enantiomers. CDs are recognized as universal chiral selectors and 
utilized both as stationary phase modifers (commercially available from 1984) and 
as mobile phase additives (12, 15, 16). However, one of its newest applications is to 
contribute to green liquid chromatography method development if used as RP-HPLC 
mobile phase modifers (4). 

3.2.1.2 Categorization 
The need to improve the physicochemical properties of CDs was recognized over 
time, so CD derivatives and branched CDs were successfully synthesized by 
chemical or enzymatic modifcations. In this way, the solubility, complex forma-
tion effciency, chemical stability, and various other properties were improved. 
Along with the improved properties, the applicability of CDs was slowly 
extended. The free hydroxyl groups of glucopyranosyl units represent a conve-
nient position for the potential structural modifcation. For each glucopyranosyl 
unit, there are two secondary and one primary free hydroxyl groups; therefore, 
reactions of modifcation could occur by substituting the hydrogen atom or the 
whole hydroxyl group. 

Based on their structure, all currently known CDs can be divided into the follow-
ing categories (13): 

• Small natural CDs 
• This group consists of α-CD, β-CD and γ-CD. 

• CD derivatives 
• CD derivatives are obtained by amination, esterifcation, or etherifca-

tion. In this way, numerous functional groups could be incorporated in 
the structure of CD, namely methyl, sulfate, nitrate, phosphate, acetyl, 
benzoyl, propionyl, carbamoyl, hydroxypropyl, hydroxyethyl, etc. CD 
derivatives have modifed solubility and hydrophobic cavity volume. In 
that respect, it could be concluded that structural modifcations infuence 
the inclusion process of the guest molecule into the cavity. The solubility 
and chemical stability of the guest molecule are also altered. 

• Furthermore, homogeneous and heterogeneous CD derivatives are dis-
tinguished depending on whether the CD hydroxyl groups are modifed 
with the same or diverse functional groups. 
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• Branched CDs 
• Branched CDs, obtained if glucose, maltose, galactose, mannose, or 

any other oligosaccharide units are bound to the native CD through its 
hydroxyl groups, are labeled as the second generation of CD. If only glu-
cose or malto-oligosaccharide units are added, homogenous branched 
CDs are obtained. Conversely, when galactose or mannose units are 
added, heterogeneous branched CDs are acquired. If only one unit is 
added to the native CD, a single branched CD is obtained, while add-
ing two or more units leads to multiple branched CDs. The solubility of 
these kinds of CDs is higher in comparison to native CDs, although the 
improvement in solubility depends on the degree of derivatization. Apart 
from changes in solubility, the availability of the internal hydrophobic 
cavity is altered as well. 

• Large ring CDs 
• Large ring CDs (LR-CDs) consist of more than eight glucopyranosyl 

units (13). 

3.2.1.3 Structure and Physicochemical Characteristics of CDs 
α-, β- and γ-CDs consist of 6, 7, and 8 glucopyranosyl units (Figure 3.1a, 3.1b, and 
3.1c), bound together with α-1,4-glycosidic link in a truncated cone-shaped structure 
characterized by a hydrophobic cavity delimited with two edges, a narrow and a 
wider one. Both oxygen atoms from the α-1,4-glycosidic bridge (ether-like oxygen) 
and hydrogen atoms (apolar C-3 and C-5 hydrogen, Figure 3.1d) form the CD cavity. 
The non-bound electron pairs originating from ether-like oxygen atoms are oriented 
toward the inside of the cavity. In this way, the interior of the cavity is hydropho-
bic and possesses the base characteristics, enabling hydrophobic and electrostatic 
interactions with analytes and solvents. In fact, the CD cavity is rarely empty, and 
molecules of water, acetonitrile, methanol, and other solvents, or their mixture, fll 
its interior. This property is one of the most signifcant CD characteristics, because 
almost all CD applications involve the formation of inclusion complexes with various 
relatively hydrophobic compounds, which is thermodynamically favorable regarding 
the water-CD interactions (13, 17). The prominent property related to the ability of 
CD to form inclusion complexes is the hydrophobic cavity diameter. The internal 
cavity diameter increases with the increase in the number of glycoside units incorpo-
rated in the structure of the CD molecule. The values of the internal cavity diameters 
for α-, β- and γ-CDs together with the remaining signifcant CD characteristics are 
presented in Figure 3.1. 

The edges of the CDs consist of free primary and secondary hydroxyl groups. 
The primary hydroxyl groups are situated at the narrower edge, while the second-
ary hydroxyl groups are positioned at the wider edge of the cavity. This kind of 
disposition is not randomly determined but rather specifed with free rotation of 
the latter that reduces the effective diameter of the edge. Since hydroxyl groups are 
hydrophilic and positioned outside the cavity, they enable CDs’ solubility in water. 
Generally, molecules with a larger number of glucopyranosyl units possess greater 
solubility in water. In fact, this is true when LR-CDs are considered but is not when 
dealing with small native CDs. The solubility of β-CDs is signifcantly lower com-
pared to α- and γ-CDs. This abnormality can be explained by the so-called second 
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α-CD

B-CD

γ-CD

a)

Consisted of 6 glucopyranosyl units

Diameter of the hydrophobic cavity - 500

Solubility in water (at room temperature, g/100mL) – 14.5

6 water molecules in the cavity

Slightly distorted simmetry

b)

c)

d)

Consisted of 7 glucopyranosyl units

Consisted of 8 glucopyranosyl units

Diameter of the hydrophobic cavity - 620

Solubility in water (at room temperature, g/100mL) – 1.85

11 water molecules in the cavity

Perfect simmetry

Diameter of the hydrophobic cavity - 800

Solubility in water (at room temperature, g/100mL) – 23.2

17 water molecules in the cavity

Slightly distorted simmetry

FIGURE 3.1 CD structures and significant characteristics

1a:  a-CD
1b:  B-CD
1c:  γ-CD
1d: glucopyranosyl unit
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belt of CDs and water-β-CD thermodynamic properties. Namely, the secondary 
hydroxyl groups on the C-2 of the glucopyranosyl unit can form a hydrogen bond 
with the C-3-OH group of the neighboring glucopyranosyl unit. In this way, the 
H-bonds form a belt around the wider edge, which is called a secondary belt. In the 
case of α-CD, the secondary belt is not completely formed, since one glucopyranosyl 
unit is in a distorted position. This is a reason for the formation of four rather than 
six possible H-bonds, leaving more hydroxyl groups to interact with the molecules of 
water and enhance solubility. The β-CD forms a complete secondary belt, exhibiting 
the lowest solubility in water. The lower water solubility of β-CD can be explained 
with water-β-CD interactions, when a favorable enthalpy followed by the unfavor-
able entropy of solutions is occurring, as well (18). Further, the β-CD is insoluble in 
most organic solvents, though the solubility is improved in the water-organic solvent 
mixtures. The general rule is that solubility of CDs decreases with an increase in the 
amount of organic solvent. This is not the case for ethanol, propanol, and acetoni-
trile, where the solubility reaches its maximum of 20–30% of this organic solvent in 
water (13). Conversely, the γ-CD has a non-coplanar, more fexible structure that is 
freely soluble in water (13, 17). 

On the other hand, though LR-CDs possess a large number of glucopyranosyl 
units, they do not exhibit wider cavity diameters, due to conformational changes of 
these molecules. When dealing with CDs consisting of 9 glucopyranosyl units (CD-
9), the molecular shape looks like a boat. For CDs consisting of 10 to 14 glucopy-
ranosyl units, the molecular shape resembles a saddle, and for molecules possessing 
20 glucopyranosyl units and lager, the cavity structure is similar to the helicoidal-
like channels. In that manner, these CDs do not possess wider cavities, though they 
are largely soluble in water, as expected (13, 17). 

Flexibility is also considered a valuable CD characteristic. Though CDs are built 
from rigid glucopyranosyl units, numerous experimental and theoretical data indi-
cate that ether-like oxygen bonds that link those rigid units possess a low barrier 
to internal rotation equal to 1 kcal mol-1. This discernment was supported by the 
“model molecular mechanics calculation on α-CD showing that planar structure 
does not correspond to the energy minimum and the energy hypersurface exhibits 
several energy minima separated by low barriers.” The concept of a rigid structure is 
insupportable with the extensive formation of inclusion complexes with analytes of 
different structures. The studies of the complexation process and complexes implied 
the effective ftting of the host and guest molecules to each other. Experimental evi-
dence of CDs’ non-rigid structure came from NMR studies, both in solution and 
in solid state. The most rigid structure is related to β-CD due to the formation of a 
complete secondary belt. In fact, it could be noticed that all phenomena related to 
β-CD’s properties are associated with the described secondary belt (13, 17, 19, 20). 

CDs are stable to different degradation reactions but are susceptible to hydrolysis 
and oxidation. Generally, CDs are more resistant to hydrolysis than starch, stable 
when exposed to bases, but strong acids (like hydrochloric acid and sulfuric acid) 
could cause their hydrolysis, resulting in the formation of a mixture of oligosaccha-
rides. The hydrolysis can occur at the α-(1,4)-glycosidic bound and open ring down 
to glucose. The rate of hydrolysis increases simultaneously with the increase in tem-
perature and concentration of acid. On the other hand, organic acids and weak acids 
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are not able to signifcantly infuence hydrolysis. The stability of LR-CDs is jeop-
ardized, since the number of α-D-1,4 linkages as decomposition points increases. 
In this way, LR-CDs are vulnerable to hydrolysis and form a large number of deg-
radation products. The susceptibility of CDs to the oxidation process is refected in 
glucose ring oxidation, and even perforation of the glucose ring can easily occur. 
The literature survey revealed that strong oxidation agents, along with elevated tem-
peratures around 50˚C, is needed to induce degradation, though hydrogen peroxide 
and weak oxidation agents can cause oxidation to a smaller extent and less rapidly 
(13, 21). 

3.2.2 inClusion ComPlexes formeD between CD 
anD various guest moleCules 

The ability to form inclusion complexes is highlighted as one of the most impor-
tant CD properties since it is responsible for most of its signifcant applications. 
Upon complexation, the guest molecule is temporarily locked or caged inside 
the CD cavity, being partially protected from the environment, which provides 
the entrapped molecules with different physicochemical characteristics. In that 
respect, the solubility in water could be improved when dealing with hydrophobic 
analytes, the stability toward oxygen, light and heat could be increased, the unde-
sired odor and taste could be masked and the separation and isolation of analytes 
enabled. For all those reasons, it is not surprising that the complexation process is 
constantly intriguing scientists worldwide and forcing them to dive deeper into the 
feld (12, 16, 21, 22). 

The guest molecule could be fully or partially incorporated into the CD cavity. 
Inclusion complexes are formed in both solid state and solution, though in solutions 
complexes prevail in the rapid equilibrium of free CD and guest molecule. In most 
cases, it is approximated that one molecule of CD is complexed with one guest mol-
ecule. However, the stoichiometry of CD and guest molecule can differ, from 1:1 to 
1:n or n:1. In other words, CDs with larger cavities, such as γ-CD, can accommodate 
more than one guest molecule at the same time, while several CDs can be linked by 
different parts of a large guest molecule. Though the assumption of 1:1 stoichiom-
etry is frequently present in research papers, this stoichiometry cannot be taken for 
granted (8, 16). 

The driving forces that govern the complexation process are still not completely 
understood, although years of research have been committed to this topic. In order to 
accomplish the inclusion complex formation, it is necessary to galvanize the equilib-
rium transfer in the direction of inclusion complex formation. This could be induced 
by some of the following interactions: 

• Extrusion of water molecules from hydrophobic CD cavity 
• Increased formation of hydrogen bonds with supplanted water molecules 
• Reduction of repulsive interactions between the hydrophobic guest mol-

ecule and aqueous environment 
• Hydrophobic interaction increase upon entrance of the guest molecule in 

the hydrophobic CD cavity (23–25). 
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Consequently, infuential factors toward inclusion complex formation include CD 
type and its cavity dimensions, temperature, as well as pH affecting the ionization 
form of the investigated guest molecules (26). Although the initial equilibrium for 
inclusion complex formation is quite fast, reaching the fnal equilibrium usually 
takes much more time, mostly due to conformational adjustments of the guest 
molecule within the cavity. On the other hand, dissociation of the formed complex 
driven by the increase in surrounding water molecules is very fast. Therefore, 
in dynamic systems, there are certain diffculties for the guest molecule to fnd 
another CD and regenerate the inclusion complex, thus leaving it free in the solu-
tion (23). Equilibrium is characterized as one of the prominent association proper-
ties, and there is a simple rule saying that the faster the complexation is, the faster 
the dissociation will be. 

During CD-guest complexation, different kinds of non-covalent interactions occur, 
ranging from van der Waals interactions to hydrogen bonds, dipole-dipole interac-
tions and London dispersion forces. Most of them are hydrophobic and are respon-
sible for stable inclusion complex formation. Different forces can be involved in the 
complexation process, but their number and type cannot be predicted. In light of this 
fact, it is diffcult to estimate how well a particular guest will accommodate within 
the CD cavity, though this information would be very useful, especially when choos-
ing between natural and chemically modifed CDs with different cavity diameters 
(12, 22). 

The effciency of complexation depends largely on the structural characteristics 
of both the CD and the guest molecule supported by their mutual geometric compat-
ibility. Although the structure of β-CD is the most rigid in relation to other native 
CDs, it is the most commonly used CD in pharmaceutical formulations. The CD 
cavity is characterized by its height and internal diameter determined by the number 
of glucose units. In that respect, the internal diameter of α-CD is lower than β-CD 
and γ-CD thus being able to incorporate low molecular weight compounds with ali-
phatic chains. Moreover, β-CD would accommodate heterocyclic and aromatic com-
pounds, covering a broad range of pharmaceutical active compounds, while γ-CD 
would accommodate complex macrocycles and steroids (23). Another reason for the 
preferred use of β-CD in RP-HPLC is based on its characteristics in terms of weak 
adsorption onto C18 columns. Therefore, column performances would remain intact, 
β-CD could be easily washed and thus cause less damage to the column in compari-
son to the other CD (10). 

Other structural characteristics, such as polarity and charge, also play an impor-
tant role in the complexation process. Analytes in their ionized state are less sus-
ceptible to complexation and decomposition. On the other hand, analytes in their 
neutral form are readily complexed compared to their ionized forms. To form inclu-
sion complexes, the analytes should be less polar than water. Moreover, analytes 
with more pronounced hydrophobic properties are able to form complexes with sig-
nifcant stability. Complexation effciency is also highly dependent on the medium 
in which the complexation process takes place. In theory, the complexation pro-
cess does not require any specifc solvent, but it requires a small amount of water 
to galvanize the thermodynamics. The co-solvents can enter the cavity, inducing 
the threefold complex formation. Generally speaking, the complexation process is 
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infuenced by enthalpic and entropic energies, both dependent on CD–guest mol-
ecule ft, solvents used, and other factors involved in this challengeable process of 
complexation (12, 21). 

The described complexation process is valid when dealing with small CDs. LR-CDs 
have not been extensively studied as small CDs, so a certain gap in knowledge is pres-
ent. As already described, LR-CDs do not have a regular cylindrical shape. In fact, 
their cavity has an irregular collapsed shape, inducing a smaller cavity diameter com-
pared to γ-CD. In order to form inclusion complexes, LR-CDs must be highly fexible. 
Since these kinds of CDs consist of many more glucopyranose units than other CDs, 
there are numerous water molecules inside their non-polar cavity (12). 

The complexation ability of CDs might serve for molecular recognition of enan-
tiomers and closely related compounds, and counting geometrical and structural 
isomers. During the formation of inclusion complexes, CD can recognize slight 
differences in the structural characteristics of the guest molecules that are exhib-
ited through non-covalent interactions. For example, β-CD is 100% selective for 
β-naphthalenesulfonate and α-naphthalenesulfonate. The molecular recognition and 
selective interactions of CDs with analytes are of great importance in separation 
science and offer a great possibility for developing highly selective analytical 
methods. If working with chiral analytes, natural CDs are known as substances with 
limited molecular recognition capacity. In that sense, it is advisable to utilize syn-
thetic CD derivatives, with introduced functional groups, to enhance the binding 
selectivity through π-π interactions and π-CH hyperconjugation (8, 12). 

CD-analyte inclusion complexes are usually spontaneously formed. However, 
there are methods proposed to induce the inclusion complex formation process, such 
as co-precipitation, slurry, paste and dry mixing, damp mixing, heating, and extru-
sion methods. All of them could be characterized as waterless. However, water is 
signifcant and should be a part of the medium in which both CD and analyte are 
dissolved. Although representing the driving force for complexation, water is some-
times essential to maintain the complex integrity. Water is not only important when 
dealing with solutions but also with crystal forms of the complexes, where they can 
form a bridge between the hydroxyl groups of the adjacent molecules of the CD. In 
the solid state, the magnitude of the crystal forces is comparable to the forces keep-
ing the complex together. To reveal the structure of the formed complexes, different 
analytical methods have been proposed in the literature (12, 21). 

3.2.3 CD-moDifieD rP-hPlC systems 

RP-HPLC systems modifed by addition of CD in the mobile phase are considered 
dynamic and rather complicated since the solute could be distributed between the 
stationary phase, mobile phase, and CD dissolved in the mobile phase (8). Under 
certain conditions, the adsorption of CD onto the stationary phase surface could 
cause the formation of a so-called pseudo-stationary phase. For example, meth-
ylated β-CD could enable chiral resolution due to its strong adsorption onto the 
hydrophobic stationary phase (27). Depending on the investigated solute, any 
CD could possibly be used as a mobile phase additive. However, when dealing 
with pharmaceutical compounds, the use of β-CD is preferred over other CDs, 
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since it is able to accommodate most heterocyclic and aromatic compounds. As 
mentioned in section 2.2, β-CD is weakly adsorbed onto the stationary phase 
surface; thus, it is often used as an RP-HPLC additive. Throughout the literature, 
when assessing the apparent stability constants of inclusion complexes formed 
with various drug molecules, both native and modifed β-CDs are mostly applied 
(28–30). The complexity of CD-modifed RP-HPLC systems arises from the pos-
sibility for the formation of multiple interactions, while resolution and separa-
tion effciency depend on different experimental conditions, such as type and 
concentration of applied CD, mobile and stationary phase characteristics, as well 
as column temperature. As already explained, inclusion complex formation in 
aqueous solutions is driven by the release of enthalpy-rich water molecules sur-
rounding the CD from its cavity. These water molecules are supplanted with 
more hydrophobic molecules, so energetically more favorable non-polar inter-
actions are established. So far, much work has been dedicated to revealing the 
structure of inclusion complexes and retention behavior in these kinds of chro-
matographic systems (10, 31, 32). However, although it is known how the solute 
is distributed, researchers are still not completely familiar with the infuence of 
the structure of analytes and experimental parameters on retention mechanisms 
occurring in these RP-HPLC systems (11). CD modifed RP-HPLC systems are 
still not investigated enough to be sure which retention mechanism would prevail 
and lead to the retention. 

3.3 CHARACTERIZATION OF CD INCLUSION 
COMPLEXES IN SOLUTION 

CDs are often considered to be challenging molecules from the analytical charac-
terization point of view, but they are worth the effort because of their wide range of 
applications. However, to fully exploit their potential, the analytical technique for 
their comprehensive characterization should be readily available (33, 34). The frst 
step in the characterization of inclusion complexes is the determination of stoichi-
ometry and complex stability constant (K), as a quantitative parameter of the bind-
ing strength (35). Determining the complex stability constant is an inevitable step 
since different complexation-related effects depend on the corresponding inclusion 
complex stability. 

Often, it is necessary to employ more than one analytical technique in order to 
provide insight into the interactions established during the complexation. In this way, 
the results of different techniques are combined and various complexation features 
are assessed. Incorporation of a guest molecule into the CD cavity causes alterations 
in the physical or chemical properties of the given guest molecule. Detecting the 
suitable changes occurring upon complexation provides a basis for determining the 
stability of the formed complex. Additionally, the observed change needs to be large 
enough to enable measurement precision (33). 

In general, the methods used to characterize inclusion complexes can be divided 
into several groups, with certain subcategories (33, 35). Spectroscopic methods con-
sist of UV-Vis spectroscopy (36, 37), fuorescence spectroscopy (38), and nuclear 
magnetic resonance (NMR) spectroscopy (36, 39, 40). When determining K with 
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UV/Vis spectroscopy, the guest molecule is used in fxed concentration, while CD 
is added in increasing concentrations and the change in absorbance peak of the 
guest molecule is monitored. The analysis is rather simple due to the non-absorbable 
nature of CD. The obtained absorbance values are then ftted to binding models 
based on the Benesi-Hildebrand, Scott, or Scatchard methods in order to calculate K 
from the slope and intercept of the constructed plots. One of the recognized disad-
vantages of these linear approaches is that they assume that equilibrium and initial 
CD concentration are the same. Additionally, the changes in absorbance are assumed 
to be proportional to the concentration of the formed complex, which in this case 
would be fully formed at the end of the titration. Moreover, a unique wavelength for 
all spectra should be carefully chosen due to bathochromic or hypsochromic shift of 
the maximum absorbance wavelength of the guest molecule upon its insertion in the 
CD cavity (35). Currently, non-linear regression is gaining precedence over linear 
transformations due to the development of algorithms able to postulate K values 
and compare them to experimentally obtained ones (35). The method established by 
Landy et al. enabled the determination of K using derivatives of the spectra, which 
helped diminish experimental error and/or spectral variations related to the rarely 
seen weak absorbance of CD (41). 

On the other hand, if the guest molecule is present in low concentration and shows 
fuorescence, fuorescence spectroscopy could be used for characterizing the formed 
inclusion complexes. NMR is also used in the investigation of the inclusion complex-
ation phenomenon, mainly due to its ability to elucidate the conformational accom-
modation of the guest inside the cavity and assess K values at the same time. K 
values are assessed based on the changes in the chemical shifts occurring when the 
concentration of the guest and/or CD is changed. Benefts brought with NMR, unlike 
other available methods, are refected in the possibility of discovering the structure 
of the formed complex through detected variations (35). 

If the guest molecule is electroactive, electroanalytical techniques, especially 
polarographic and voltammetric, are extensively used (42,43). Furthermore, isothermal 
titration calorimetry (ITC) is the only method that simultaneously provides information 
on both thermodynamic aspects of complexation as well as K (33, 35, 44). Upon 
binding, a heat fow is generated, allowing a real measurement of binding interac-
tions, determination of complex stoichiometry and K, as well as thermodynamic 
parameters of binding, such as enthalpy or entropy changes. ITC also has advantages 
shown through a shorter analysis time and a smaller sample in comparison to other 
methods (33). 

Separation techniques, such as HPLC and capillary electrophoresis (CE) (45) 
or affnity capillary electrophoresis (ACE) (46), are also used in the analytical 
characterization of CD inclusion complexes and consequent calculation of K. In 
CE, the difference in the ion mobility or affnity of charged/uncharged molecules 
to charged electrolytes is the basis for separation, while ACE complements analy-
ses of affnity effects, such as electrostatic interactions, hydrogen bonding, and 
van der Waals interactions. CE also fnds its purpose in analyzing CD inclusion 
complexes with charged guest molecules (33). However, all separation techniques 
lack the ability to provide direct structural information on formed inclusion com-
plexes (33). 
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In recent years, total organic carbon (TOC), a method usually known for testing 
water quality, has been used to analyze CD inclusion complexes. This method is not 
specifc; thus, it fnds its purpose in analyzing compounds lacking chromophores or 
fuorophores in their structure (47). 

3.3.1 Determination of K by means of hPlC 

HPLC has the potential to be used in K determination if the mobile phase is modi-
fed with CD. The guest molecule is accommodated within the CD cavity and eluted 
from the column by the order of the highest inclusion complex stability. To be able to 
use HPLC to determine K, stationary phase properties should remain intact; namely, 
adsorption of CD onto the stationary phase surface should be very weak. However, 
in practice, free analyte, free CD, and CD-analyte complex could be adsorbed on 
the stationary phase, creating a miscellaneous environment. Although powerful for 
determining stoichiometry and K in solution, HPLC often requires extensive sample 
preparation as well as strict control of experimental conditions, enabling data repro-
ducibility (23, 48, 49). 

If K is determined in the HPLC environment, the difference in retention factor 
of the guest molecule upon complexation is followed. K is calculated based on the 
following equation (3.1): 

˛
˝K C  

k k  k0 0 

x ˙
ˆD1 1  

(3.1) += 

where k is retention factor of the guest molecule forming an inclusion complex with 
CD, k0 is retention factor of the guest molecule if CD is not present in the mobile 
phase, [CD] is CD concentration in the mobile phase, x is previously determined 
complex stoichiometry, and K is complex stability constant. The presented Equation 
3.1 was developed for the chromatographic assessment of K, and it is extensively 
used throughout the literature (28, 29, 48–53). To determine K, 1/k versus [CD] graph 
is constructed. If the obtained graph is linear, K is calculated from the slope and 
intercept of the constructed graph. This approach is benefcial due to the possibil-
ity of simultaneous assessment of thermodynamic parameters of complexation by 
varying the temperature while conducting the experiments (50). 

The chromatographic approach was successfully applied to determine the sta-
bility of trans-resveratrol:β-CD inclusion complex (50). It was concluded that 
the complex stability is largely affected by mobile phase composition, as well as 
guest molecule structure. β-CD concentration was increased up to 2.5 mM, and as 
expected, the retention time of the guest molecule simultaneously decreased due to 
inclusion complex formation, regardless of the amount of organic modifer in the 
mobile phase. However, it is observed that the decrease in retention time is higher 
with the lowest content of organic modifer. In this study, methanol was chosen as 
an organic modifer since its affnity toward β-CD is not substantial; specifcally, 
methanol forms the association of 0.32 M-1 with β-CD. However, if the methanol 
concentration in the mobile phase is high, it is competing with trans-resveratrol for 
β-CD complexation (50). 
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Ravelet et al. studied the inclusion complex stability of nimesulide with both native 
and modifed β-CD in HPLC (29). Phenyl silica gel, as a weak non-polar stationary 
phase, was used to preclude the use of higher amounts of mobile phase organic modi-
fers and their competitiveness with nimesulide for binding to β-CD. Modifed β-CD 
established stronger interactions with nimesulide in comparison to the native one. In 
addition, nimesulide was investigated under one pH value, only in its ionized form, 
which could also affect the interactions forming with β-CD. Furthermore, in the case 
of bupivacaine inclusion complexes with modifed β-CD, there were differences in 
K values obtained in HPLC at varying pH, indicating the importance of pH and 
consequently the ionization form of the analyte (28). 

De Melo et al. managed to determine the K of inclusion complexes formed 
between nitroheterocyclic compounds and β-CD using HPLC (53). Experiments 
were conducted on the C18 stationary phase, with 20% (v/v) acetonitrile as the 
organic modifer and β-CD concentration in the aqueous part of the mobile phase 
increasing up to 30 mM. As expected, the retention times of the investigated solutes 
decreased with an increase in β-CD concentration (53). 

HPLC approach was also successfully applied in assessing the stability of inclusion 
complexes formed between geraniol and α-terpineol, volatile and water-insoluble 
compounds, with β-CD, using ethanol as the mobile phase organic modifer (48). 

Gazpio et al. applied a chromatographic approach to determine K of inclusion 
complexes formed between pindolol and other indole derivatives with different types 
of CD (52). The investigation was undertaken using the C18 stationary phase and 
with low amounts of methanol as the mobile phase modifer. K values for complexes 
formed between indole derivatives and β-CD were in accordance with the literature 
data (52). 

El-Barghouthi et al. used phase-solubility studies to determine K values for com-
plexes that risperidone forms with various CDs (54). The study shows that both 
β-CD and hydroxyl-propyl β-CD form 1:1 and 1:2 complexes with risperidone, with 
risperidone:β-CD 1:2 complex reaching saturation at 7 mM β-CD concentration. 
Also, K values are slightly higher for inclusion complexes with β-CD in comparison 
to hydroxyl-propyl β-CD due to the hydrophobic effect. The results also show that 
K is affected by pH; namely, K values are higher if the inclusion complex is formed 
with non-ionized risperidone species (54). 

In the authors’ previous research, a chromatographic approach was employed 
to determine K for risperidone and its three structurally related impurities, as well 
as olanzapine and its two structurally related impurities inclusion complexes with 
β-CD (11). The experimental setting was composed of varying acetonitrile content, 
the pH of the aqueous part of the mobile phase in order to investigate the analytes in 
both ionized and non-ionized form, β-CD concentration in the aqueous part of the 
mobile phase, and the column temperature. The addition of an organic modifer in 
the mobile phase can diminish the stability of the formed β-CD inclusion complex. 
Increasing the organic solvent content provides a less polar mobile phase, which 
also becomes a more comfortable environment for non-polar solute. As a result, the 
non-polar solute is soluble in the non-polar mobile phase; thus, there is no driving 
force attracting the solute to β-CD cavity (52). Therefore, the acetonitrile content 
was kept at 15% (v/v) or 20% (v/v). Nevertheless, the solute and organic modifer 
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could compete for β-CD binding sites, affecting the solutes’ complexation process, 
even if it is proven that the solvent binds weakly (52). The choice of the type of 
organic modifer is also important, besides its content in the mobile phase, not only 
from the complexation perspective but the stationary phase microenvironment as 
well. Although methanol is preferred over acetonitrile when assessing the stability 
of β-CD inclusion complexes throughout the literature, acetonitrile was chosen in the 
previous authors’ study due to its higher elution strength (11). The general rule that 
an increase in β-CD concentration in the mobile phase leads to a decrease in reten-
tion factor value was not strictly followed in the entire experimental space. For that 
reason, in this research, K could not be calculated by applying the aforementioned 
formula (3.1) for all substances under all of the examined experimental conditions 
(11). The authors observed that the changes in retention factor values are affected 
by pH and acetonitrile content. pH also infuences the ionization of stationary phase 
free silanol groups, so secondary interactions with the stationary phase could be 
weakened if free silanol groups are non-ionized at pH lower than 3.0. When sol-
utes’ secondary interactions with the stationary phase are diminished, it is left to 
acetonitrile and β-CD in the mobile phase to compete for interaction with the solute 
and determine whether retention will be governed by complexation mechanisms or 
driven by acetonitrile. The authors hypothesized that for these reasons, stability con-
stants could be calculated for all examined compounds when pH was set to 2.0 and 
acetonitrile content to 15% (v/v), and for most of them if acetonitrile content was 
20% (v/v) (11). 

HPLC experiments are time-consuming and require both chemical and human 
resources; therefore, a need for in silico tools able to replace extensive HPLC experi-
ments exists. Applying in silico tools could help in defning the experimental space 
within which change in retention factor values would comply with changes in β-CD 
concentration. This led the authors to think that the QSRR model developed to 
describe retention behavior in β-CD modifed RP-HPLC could predict conditions 
under which interactions leading to complexation would be able to outperform 
remaining interactions in a dynamic system with an increased level of complexity. 

3.3.2 Determination of ComPlexation-relateD thermoDynamiC 

Parameters in β-CD-moDifieD rP-hPlC 

Stability constants provide information about the mutual affnity between molecules 
but could be insuffcient to refect the real stability of the formed complex without 
the accompanying thermodynamic parameters (55). Van der Waals and hydrophobic 
interactions are dominant in the CD complexation process, while hydrogen bonding 
and steric effects also play a certain role (56). Complexation thermodynamic param-
eters can be considered as results of the weighted contributions of the aforemen-
tioned interactions. Thermodynamic parameters include Gibbs free energy (ΔG°), 
standard molar enthalpy (ΔH°) and standard molar entropy (ΔS°) and provide addi-
tional information about binding mechanism dynamics in the microenvironment of 
the CD cavity (57). 

Different methods could be used to determine thermodynamic parameters of 
CD complexation. There are papers reporting the utilization of microcalorimetry 
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to determine thermodynamic parameters of complexation between catechin and 
paeonol with β-CD (58, 59). Further, UV/Vis and fuorescence spectroscopy were 
used to assess thermodynamic parameters of β-CD complexation with ibuprofen and 
indole chalcones (60, 61). Among the spectroscopic methods, NMR spectroscopy 
can be used for the same purpose (39). However, methods such as liquid chromatog-
raphy, CE, pH potentiometry, and many others have been reported as solutions to 
determine the thermodynamic aspects of β-CD complexation (56). 

When the chromatographic approach is used for determining inclusion complex 
stability, the aforementioned thermodynamic parameters could be assessed at the 
same time if the temperature is varied during the experiments. ΔH° and ΔS° could 
be easily calculated from the following equation (3.2): 

−˙H ° ˙S° 
ln K = + (3.2) 

RT R 

where R stands for the universal gas constant (8.314 J mol-1 K-1), while T (K) is the 
varying column temperature. Van’t Hoff plot of lnK versus 1/T is constructed and 
the slope of the obtained curve equals -ΔH°/R, while ΔS°/R represents the intercept. 

ΔG° is calculated employing ΔH° and ΔS° in the following manner (3.3) (29, 55, 62): 

ΔG° = ΔH°—TΔS° (3.3). 

Upon addition of CD to the mobile phase ΔH° and ΔS° values are increasing, indi-
cating the unlikeliness of transfer of the guest molecule from mobile to stationary 
phase, most certainly due to inclusion complex formation. The rise in thermody-
namic parameter value is associated with inclusion complex formation between the 
guest molecule and CD in the mobile phase. It is reported in the literature that sta-
tionary phase infuence is negligible if the CD concentration in the mobile phase is 
lower than 1 mM (63). 

It is well known that classical hydrophobic interactions are associated with positive 
enthalpy and entropy changes. Within deep insertion into the CD cavity, the carboxylic 
group could stay outside the cavity and form a hydrogen bond with functional groups 
at the outer rim of the cavity, explaining the negative enthalpy values (63). 

As in the case of stability constants, there have been attempts to predict com-
plexation thermodynamic parameters by means of Quantitative Structure-Property 
Relationship (QSPR) models (64, 65). This kind of approach offers great savings in 
terms of cost and time. Maljurić et al. developed a novel in silico approach to derive 
the stability and thermodynamic parameters of solute:β-CD inclusion complexes, 
based on the QSRR model employing a machine learning algorithm (11). The pro-
posed methodology, which will be discussed later, provides insight into the inclusion 
complexation behavior of selected analytes. 

3.3.3 stoiChiometry of formeD inClusion ComPlexes 

The frst step in the analysis of inclusion complexes formed between guest mol-
ecules and CD is the determination of stoichiometry. Through a literature search, it 
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can often be seen that authors assume 1:1 stoichiometry between the guest molecule 
and CD. This assumption can easily lead to errors in consequently calculated 
inclusion complex stability (66). For that reason, it is always advisable to experimen-
tally determine the molar ratio between the guest molecule and CD in the formed 
inclusion complex. Among available analytical techniques, Danel et al. used 1H 
NMR spectroscopy with a continuous variation method to determine the stoichi-
ometry of risperidone and 9-hydroxyrisperidone with CD hosts, as one of the most 
applied methods for the intended purpose (39). Further, the continuous variation 
method using fuorescence spectroscopy was also used in analyzing the stoichiom-
etry of ibuprofen: CD inclusion complexes (67). The continuous variation method is 
not the frst choice when investigating stoichiometry, due to its duration and the large 
amount of substance needed for sample preparation. 

Further, mass spectrometry with the electrospray ionization technique (ESI-MS) is 
also used in assessing complex stoichiometry. ESI-MS is a mild ionization procedure 
capable of studying interactions between solutes and CD. However, its main advan-
tage is the possibility of transferring ions from the solution into the gas phase without 
disrupting non-covalent interactions forming the inclusion complex (68, 69). 

The authors used ESI-MS in their previous paper to determine the stoichiom-
etry of inclusion complexes formed between risperidone and its related impurities 
with β-CD, as well as olanzapine and its related impurities with β-CD. Mass range 
from 100—3000 m/z, which was the upper limit according to instrument setting, was 
analyzed, and it was concluded that all inclusion complexes are formed in a 1:1 ratio 
(11). Figure 3.2 presents the signals corresponding to the investigated solutes, β-CD 
and formed inclusion complexes for each of the examined substances (11). 

3.4 QUANTITATIVE STRUCTURE-RETENTION 
RELATIONSHIP MODELING 

Investigating the retention of an analyte, as well as the resolution in the given RP-HPLC 
system, usually requires an experimental approach. The experimental approach has 
a defciency refected in the substantial amount of time and resources needed to 
come to valid conclusions. If the theoretical approach capable of predicting reten-
tion to a certain extent existed, RP-HPLC method development would be faster and 
more effcient (70). The idea of predicting chromatographic behavior on the basis of 
molecular structure induced the development of the Quantitative Structure-Retention 
Relationships (QSRRs) methodology. First, the Quantitative Structure-biological 
Activity Relationships (QSARs) methodology was developed and applied the same 
pattern of thinking to the analysis of chromatographic data-enabled development of 
QSRRs (71). 

The QSRRs represent mathematical relationships between chromatographic parame-
ters determined for a series of analytes in a given chromatographic system and numerical 
values accounting for structural differences between the investigated analytes, denoted 
as molecular descriptors (72, 73). In most cases, when using QSRR, the target retention 
parameter represents the dependent variable of the linear equation obtained as a result 
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FIGURE 3.2 Full scan positive ESI mass spectra of: 

2a: Risperidone—β-CD complex; 2b: Risperidone impurity 1—β-CD complex; 2c: Risperidone impurity 2—β-CD complex; 
2d: Risperidone impurity 3—β-CD complex; 2e: Olanzapine—β-CD complex; 2f: Olanzapine impurity B—β-CD complex; 
2g: Olanzapine impurity C—β-CD complex; 

From Maljurić, N. et al., Journal of Chromatography A, 1619, 460971, 2020., reused with publisher’s permission. 
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of multivariate regression of retention data in dependence of descriptors describing the 
investigated analytes (74). 

In the last few decades, QSRRs have been used to: 

(i) Characterize chromatographic columns by quantitative comparison of their 
separation capabilities 

(ii) Identify structural descriptors of the utmost importance 
(iii) Investigate separation mechanisms under certain chromatographic condi-

tions at the molecular level 
(iv) Evaluate complex physicochemical properties of analytes other than 

chromatographic 
(v) Predict retention of a new compound or identify an unknown compound (75) 

There are several types of classical QSRR models. The oldest one relates 
the retention factor with the logarithm of the octanol-water partition coeffcient 
(logP), calculated on the basis of analyte structure with the aid of commercially 
available computer programs (72, 76). This type of QSRR is also considered the 
simplest. The second type of QSRR is based on the fundamental theory of liq-
uid chromatography, which assumes that retention is governed by intermolecular 
interactions. Namely, this approach relies on Abraham’s linear solvation energy 
relationships (LSER) theory (77). The general LSER equation in HPLC is as fol-
lows (3.4): 

2 H H Hlog  k = log + + vVx + s + a ˙ + bko rR  ˝ ˆ (3.4) 2 2 2˛ ˛ 
where R2 is the excess molar refraction of the analyte, Vx is its molecular volume cal-
culated from the McGowan algorithm (78), π2

H is dipolarity/polarizability descrip-
tor, Σα2

His a measure of the ability of the analyte to donate a hydrogen bond, Σβ2
H is 

an analogous parameter of hydrogen bond accepting potency. Log k0 is a constant, 
while r, v, s, a, and b are regression coeffcients accounting for the total comple-
mentary properties of the chromatographic system (79). The aforementioned theory 
enables determination of cavity terms, dipolar terms, and hydrogen bonding terms as 
contributing mechanism types used to explain retention behavior. The cavity term is 
a measure of the free energy necessary for separating the solvent molecules and pro-
viding a cavity of a suitable size for the solute. In the case in which π* is defned as a 
measure of the dipolarity-polarizability of the investigated species, the dipolar term 
may be explained as a product of the solute and the solvent π* interactions. Finally, 
the hydrogen bonding terms show the hydrogen donating and accepting capabilities 
of a given solute (80). 

The third QSRR type relates retention factor values to structural descriptors 
obtained by applying computational chemistry (72). This type of QSRR model can 
be represented via the following equation (3.5): 

°+ ° ° °t = k k + k + k AR 1 2µ 3̇  Min 4 WAS (3.5), 
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where k k˜− ˜ are regression coeffcients, μ accounts for dipole-dipole or dipole-1 4 
induced dipole interactions between analyte and mobile or stationary phase com-
ponents, δMin represents analytes’ fragment polarity and consequently the ability of 
analyte to participate in polar interactions with phases such as dipole-dipole, charge 
transfer and hydrogen bonding, while AWAS characterizes the strength of London 
dispersion bond forming between analyte and molecules forming chromatographic 
phases (76). 

The classical QSRR approach solely links molecular descriptors to the observed 
response. Therefore, experiments are conducted under only one defned set of con-
ditions, which constrains the practical applicability of the model. Consequently, 
future usage of the developed model is limited to the concrete values of the fac-
tors (6). For these reasons, interest has arisen in the so-called mixed modeling 
relating both experimental parameters and molecular descriptors to the observed 
response. Incorporating all infuential factors in the model increases the percentage 
of explained variance and improves the model’s predictive performance (81). 

3.4.1 moleCular DesCriPtor seleCtion 

A molecular descriptor could be defned as a result of a logical and mathematical 
procedure that transforms chemical information into a useful number or results of 
a standardized experiment, enabling a better understanding of the various charac-
teristics of a molecule (82). Defnitions of molecular descriptors could rely on dif-
ferent theories, while their simple calculation is enabled by the development and 
application of algorithms. There are several groups of molecular descriptors, namely 
physicochemical descriptors, clearly connected to retention but often susceptible to 
errors. On the other hand, quantum chemical descriptors have a weak correlation 
with retention, which is one of their faws. However, quantum chemical descrip-
tors provide detailed information on retention mechanisms in chromatography at the 
molecular or submolecular levels (83). 

There are also theoretical descriptors that are easy to calculate, but their correlation 
with a certain retention phenomenon is not always obvious (84). Theoretical descrip-
tors are generally divided into zero- (0D), one- (1D), two- (2D), three- (3D) and four-
dimensional (4D) descriptors. Descriptors denoted as 0D are usually derived from 
molecular formulas and represent the type and number of atoms, molecular mass, 
etc. In the case of 1D descriptors, molecular functional groups or their substituents 
are also taken into account. 2D descriptors consider molecular topology, while 3D 
descriptors also take into account spatial conformation. Further, 4D descriptors are 
calculated on the basis of the molecular representation of properties indicating the 
interaction of a molecule with the surrounding space (85). 

Molecular descriptors contribute to a more comprehensive understanding of 
various molecular characteristics. The development of different algorithms enabled 
their simple calculation, but the problem remained that there is a practically unlim-
ited number of structural descriptors that can be assigned to one analyte. Therefore, 
the key to successful QSRR model building is the proper selection of the most 
informative molecular descriptors for a given set of analytes from a large pool of 
mutually correlated descriptors (83). For all these reasons, in order to properly utilize 
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molecular descriptors, a certain prior knowledge in statistics, chemometrics, QSRR 
principles, as well as the characteristics of the feld from which the problem arises, 
is needed. This indicates that the feld of investigation and utilization of molecular 
descriptors is highly interdisciplinary (82, 84). 

3.4.2 seleCtion of exPerimental Parameters 

Experimental design methodology represents an effcient procedure for planning 
the experiments and defning the experimental space. Applying experimental design 
methodology enables testing of the infuence of the change of one or more inde-
pendent variables on the system’s response. Consequently, valid conclusions about 
certain behaviors in the system can be made. 

The benefts of this multifactorial approach are refected in the reduction in the 
number of experiments and cost savings in comparison to the traditional One Factor 
At a Time (OFAT) approach. The OFAT considers changing one factor in the experi-
mental setting and investigating its infuence on the observed response, while other 
factors are kept constant. Additionally, the experimental design approach takes 
interactions between variables into account and provides information about system 
behavior in the entire experimental space, while the quality of this information is 
always higher in comparison to the OFAT approach. Within the defned experimen-
tal space, multiple linear regressions are used to ft a mathematical model to the 
experimental data obtained. Prior to its use, validation of the obtained mathemati-
cal models needs to be performed. The quality of the model is usually evaluated by 
analysis of variance (ANOVA), providing information about the signifcance of the 
model’s coeffcients and not a signifcant lack of ft test if the model is reliable. In 
most cases, during the optimization, quadratic models explaining the relationship 
between investigated variables and selected responses are the most suitable, allow-
ing the construction of 3D response surface plots. The general expression of one 
quadratic model for investigation of the infuence of two variables on the selected 
response is as follows: y = b0 + b1x1 + b2x2 + b12x1x2 + b11x1

2 + b22x2
2, where y is the 

response, x1 and x2 are investigated variables, x1x2 represents the interaction term, 
x1

2 and x2
2 are quadratic terms, b0 is an intercept, while b1, b2, b12, b11 and b22 are 

the model’s coeffcients. Based on the relationship within the equation, 3D response 
surface plots could be constructed, enabling the selection of optimal separation con-
ditions. (86–88). 

3.4.3 teChniques for qsrr moDel builDing 

When the input and output variables of the QSRR model are selected, the next 
step is to fnd an appropriate technique to correlate them. The choice of a regres-
sion technique to correlate descriptors and/or experimental parameters with 
chromatographic retention is crucial to the prediction ability of the developed QSRR 
(89). With respect to the studied problem, strategies for QSRR model building are 
based on either regression or classifcation. The most commonly applied regres-
sion technique relating molecular descriptors to chromatographic retention in the 
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frst QSRR models was multiple linear regression (MLR). Moreover, when there is 
a higher number of molecular descriptors, partial least squares (PLS) regression was 
more frequently used (85). Although easily interpreted, MLR was not able to follow 
the progress in molecular descriptors theory, which required the use of techniques 
capable of handling a large number of a model’s inputs and dealing with non-linear 
dependencies between input and output variables (90). 

Machine learning algorithms (MLA) take advantage of simple modeling tech-
niques due to their ability to combine attributes in an advanced way. In addition, 
MLAs are capable of dealing with a large number of model inputs. Among the avail-
able MLA, artifcial neural networks (ANN) and support vector regression (SVR) aid 
in computer-assisted retention prediction (89, 90). 

3.4.3.1 Artifcial Neural Networks 
ANNs represent a chemometric tool for solving multivariate chemical problems 
based on computer techniques inspired by simulating neurological processes of a 
human brain (91). There are numerous defnitions of ANNs, but the simplest one 
presents ANN as a black box with various inputs entering and capable of produc-
ing different outputs. ANN’s strength is refected in the utilization of rather simple 
mathematical operations to solve complicated, ill-defned, or non-linear problems 
(91, 92). An additional advantage of ANN over classical statistical methods is that 
ANN does not require prior knowledge of the mathematical relationship between the 
examined variables (93). 

A multilayer feedforward network is an ANN type mostly recognized in phar-
maceutical analysis, due to its clear architecture and the relatively simple back-
propagation algorithm used for its training. ANN architecture considers organizing nodes 
into layers and linking layers of neurons with modifable weighted interconnections. The 
number of neurons in the input layer equals the number of input variables. The same 
stands for the output layer, while the input and output layers are connected with a variable 
number of hidden layers consisting of an optimized number of neurons (94). 

ANN training consists of adjusting the weights to achieve certain optimal values. 
Initially, weights are randomly assigned, and input-output pairs are represented in 
the non-trained network. The output predicted by the network is compared to the 
desired output value, and the differences serve to adjust the weights. These cycles 
are called epochs, and they are repeated until the desired error values are obtained. 
The optimal duration of training is defned based on the minimum validation error 
through the defned number of epochs. 

To evaluate how successful the model is in terms of its predictive ability, it is neces-
sary to determine the coeffcient of determination between responses obtained experi-
mentally and predicted by the network (R2), root mean square error (RMSE), and the 
correlation coeffcient between experimentally obtained and predicted values of the 
observed response. R2 is calculated according to the following formula (2.6): 

n ( y −ŷ )2 
i ˆ2 i=1= −

˙
R 1 (2.6) 

2˙ i
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=1
( yi − y ) 
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While RMSE is calculated according to the formula presented below (2.7): 

n 
 2

˙ 1
( yi − ŷ1 )i=RMSE = (2.7) 
n 

After optimization, the real prediction ability of the network is evaluated on a new 
set of data previously unseen to the network (test set or external validation) (95, 96). 

There are two approaches to model validation: internal or cross-validation and 
independent or external validation. Cross-validation starts with removing a com-
pound or group of compounds from the training set in order to make them tem-
porarily test set, while regression is repeated on a segregated set of data applying 
Leave-One-Out or Leave-Many-Out strategies. The predictive ability of the model is 
evaluated based on the cross-validation coeffcient of determination (Q2) calculated 
according to the formula presented below (2.8): 

( y − y )2 
exp LOO 

= −˙Q2 1 (2.8) 
˙ 2

( yexp − yexp ) 

where yLOO is the response predicted by the model. 
External validation ensures the possibility of applying the developed model to 

predict the behavior of untested compounds. However, there are circumstances, 
such as a low amount of data, under which external validation cannot be performed. 
Throughout the literature, the authors state that the model could be highly predictive, 
even if validation was not undertaken on an external set of data (97–101). 

3.4.4 DeveloPment of the qsrr in β-CD moDifieD rP-hPlC 

As previously mentioned, β-CD modifed RP-HPLC systems are dynamic and 
rather complicated, thus making retention modeling more challenging in com-
parison to regular RP-HPLC. Additionally complicated by the joint effect of 
complexation and adsorption equilibrium on retention, they require a specifc 
methodological approach for retention modeling. The complexity of the system 
outreaches the capabilities of mixed QSRR models but requires the introduction of 
an additional type of descriptors, so-called association constants, introduced in the 
paper published by Maljurić et al. The association constants would characterize 
the formed inclusion complexes with β-CD. Together with molecular descriptors 
and experimental parameters, association constants would be considered QSRR 
model inputs (10). 

To calculate complex association constants, the inclusion complex structures 
should frst be obtained. To anticipate the extensive experimental procedure, an 
in silico approach in terms of molecular docking was conducted. A docking study 
is performed with the aim of predicting the most certain structures of inclusion 
complexes. To perform a docking study, it is necessary to label β-CD as a receptor 
(host), while investigated analytes in their minimum energy conformations across 
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the investigated experimental conditions are marked as ligands (guests). Docking 
studies consider discovering energetically the most favored type of binding between 
the host and the guest molecule. Therefore, it is necessary to determine the ligand 
variables that would uniquely defne the binding mode. If the ligand is rigid, the 
variables include position, orientation, and conformation. Docking methods also 
require certain search functions, such as the Lamarckian genetic algorithm, which 
enables prediction of free binding energies and consequently the association con-
stants of incorporated ligand molecules. Generally, docking studies are expected 
to provide information on the structure of the complex formed between ligand and 
receptor, as well as its stability expressed through the calculated energy of binding 
(102, 103). The binding energy of the formed inclusion complexes, as well as the 
difference between the heat of formation of the inclusion complex and the heat of 
formation of the free binding molecule, was calculated and used to choose the most 
stable conformation of the inclusion complex. In general, a more thermodynami-
cally favorable pathway of inclusion complex formation is associated with a lower 
binding energy of the suggested complex structures. Based on the predicted pre-
ferred inclusion complex structures formed between β-CD and selected analytes 
(risperidone, olanzapine, and their structurally related impurities), the following 
complex association constants were calculated: energy of binding (BE), estimated 
inhibition constant (IC), interaction energy (IE), electrostatic energy (EE), fnal 
intermolecular energy consisting of van der Waals energy, hydrogen bonding, 
desolvation energy (VDW-HB-DE), fnal total internal energy (TI), torsion energy 
(TORE) and unbound system energy (UE). 

Preliminary selection of molecular descriptors in β-CD modifed RP-HPLC was 
done in accordance with Abraham’s LSER theory, as previously explained, and it 
included the octanol/water partition coeffcient (logP), polarizability (POL), the sum 
of the hydrogen atoms connected to the hydrogen bond donating atoms (H-don), the 
sum of the ion pairs on the hydrogen bond acceptor atoms (H–acc), dipole-dipole 
energy (DEN), charge dipole-dipole energy (CDEN), Conolly solvent accessible area 
(SAS), solvent-excluded volume (SEV), 1,4 van der Waals energy (VDW), non-1,4 
van der Waals energy (NON VDW), molecular area (MA), molar refractivity (MR), 
highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital 
(LUMO) (10). 

The main role of each molecular descriptor, independent of its way of calculation, is 
to encode the analyte’s chemical structure. However, in a particular task of modeling, 
not all molecular descriptors are equally important. For that reason, in the initial phase, 
it is important to come to the rational number of descriptors while simultaneously 
acquiring as much chemical and structural information as possible (104). 

Prior to the QSRR model development, the correlation between descriptors was 
performed via multiple linear regressions to remove redundant descriptors and reduce 
the system load. In this way, mutually non-correlated descriptors would be kept for 
model building. The correlation was performed within molecular descriptor and com-
plex association constants based on the determined cut-off value for descriptor cor-
relation coeffcients of 0.990. POL, SAS, MA, MR, VDW, D, LUMO, and HOMO 
highly correlated with each other, so POL was included in the model as it showed 
the highest correlation with all the other molecular descriptors. When dealing with 
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complex association constants, only IE and VDW-HB-DE correlated with each other; 
therefore, it was decided to retain VDW-HB-DE in the model. Another confirmation 
that complex association constants are important in model building in this kind of 
RP-HPLC system lies in the fact that there was no correlation between molecular 
descriptors and complex association constants, as they carry different information 
equally important for a given system (10).

Experimental space for the QSRR model construction was properly covered by 
creating a plan of experiments applying central composite design (CCD). Preliminary 
experiments revealed the parameters with the highest influence on retention. 
Consequently, the following parameters were included in the CCD: acetonitrile con-
tent in the mobile phase (%), pH of the aqueous part of the mobile phase, B–CD 
concentration in aqueous mobile phase, and column temperature.

To sum up, mutually uncorrelated molecular descriptors and complex association 
constants along with experimental parameters were included as model inputs toward 
retention factors. The QSRR model was built with the aid of ANN, a machine learn-
ing algorithm capable of solving complicated modeling problems (7). A multilayer 
perceptron with three layers (input, hidden and output), 11-8-1 topology was con-
structed and trained with a backpropagation algorithm (Figure 3.3). Good predictive 
performance of the networks was confirmed through low RMSE values for all data-
sets accompanied by high R2 (10).

3.5  DEVELOPMENT OF COMPUTATIONAL MODELS 
TO PREDICT CD COMPLEXATION BEHAVIOR

The pharmaceutical industry prioritizes usage of B-CDs among available native and 
modified CDs, with respect to their cavity size complementary to most drug-size 
molecules. There are pharmaceutical formulations with B-CD in the role of solubi-
lizer of otherwise insoluble drugs (105, 106). The existence of such formulations 
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FIGURE 3.3 ANN with 11-8-1 topology trained with back propagation algorithm
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on the market encouraged predicting thermodynamic properties of the complex-
ation process, due to its potential infuence on new pharmaceutical formulation 
development. 

Determining the binding constant and accompanying thermodynamic parameters 
of CD complex formation experimentally is not an easy task, mainly due to low solu-
bility of drug molecules in the aqueous solutions and therefore substantial amounts 
of time needed. Major interaction types revealed so far include van der Waals inter-
actions, hydrophobic interactions, hydrogen bonding, and relaxation by extrusion of 
energy-rich water molecules by the guest molecule (107). To avoid extensive experi-
ments, there are computational methods capable of predicting stability constants, 
thermodynamic parameters, and interactions leading to complex formation. Further, 
the direction of computational methods has started to rise relatively recently but is 
already widely used in clarifying the factors involved in the CD complexation pro-
cess (107, 108). 

Steffen et al. investigated the predictability of three thermodynamic properties 
in relation to CD complex formation with various guest molecules (109). The QSPR 
models were built with principal component regression (PCR), partial least squares 
regression (PLSR), and support vector machine regression (SVMR), and their ability 
to accurately predict ΔG°, ΔH° and ΔS° were evaluated. The study results showed 
that the poor predictability of ΔS° to a larger extent, followed by ΔH°, is related to 
its strong dependence on the structure of the formed complex (109). In that respect, 
Katritzky et al. developed QSPR models with an aim to predict free energies of com-
plexation process occurring between guest molecules and CDs employing fragmen-
tal descriptors and the CODESSA-PRO program, which uses different geometrical, 
topological, quantum chemical, and thermodynamic molecular descriptors derived 
from molecular structural without need for experiments (65). CODESSA descriptors 
are relatively diffcult to interpret, unlike fragmental descriptors. Nevertheless, a 
physical phenomenon occurring during host–guest interaction can be a good basis for 
selecting the fragments for modeling. However, if the QSPR model uses fragments, it 
includes more variables than models using traditional descriptors, which is one of the 
disadvantages of this approach (107). Then, Perez-Garrido et al. constructed a QSPR 
regression-based model to predict and correlate stability constants of 233 organic 
compounds toward β-CD with known stability constant values (107). For the frst 
time, the models correlated TOPS-MODE descriptors with β-CD complexation abil-
ity, and it was concluded that the leading complexation forces are hydrophobicity and 
van der Waals interactions. For this reason, the complexation process is promoted by 
the presence of the hydrophobic group and voluminous species in the guest molecule 
structure (107). 

As a sequel of their previous research in which host-guest interactions were 
modeled (110, 111), Ahmadi et al. developed a 3D-QSAR model with the aid of 
Grid-INdependent Descriptors (GRIND). The selection of important variables was 
performed with a genetic algorithm, while the selected descriptors were correlated to 
complex stability constants of 126 organic compounds with β-CD using PLSR. The 
validated 3D-QSAR model provided information about the importance of hydrogen 
bond acceptor and/or donor groups in the molecule structure with respect to unfavor-
able complexation. The stability of the formed complexes with β-CD is affected by 
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the size and shape of the complexed guest molecules (108). In addition, according 
to these study results, steric and hydrophobic interactions are labeled as the major 
driving forces in the β-CD complexation process. In another study, Ghasemi et al. 
constructed QSAR models for prediction of stability constant of mono and 1,4-di-
substituted benzenes with α-CD applying methods of comparative molecular feld 
analysis region focusing (CoMFA-RF) and VolSurf. CoMFA felds were combined 
with physicochemical descriptors to improve the model predictability (112). The 
study results showed that inclusion complexation of benzene derivatives with α-CD 
is mostly infuenced by electrostatic and hydrophobic effects as well as molecular 
shape (112). 

Li et al. focused on modeling β-CD binding behavior of structurally diverse 
drug molecules with poor solubility. They used K values obtained from a literature 
search and established a model employing multiple linear regression (113). As previ-
ously reported, the hydrophobic effect also appeared to be the most important in the 
drug β-CD binding. Larger binding constants were always followed by higher drug 
hydrophobicity. The inclusion of a drug molecule into the cavity was also infuenced 
by the attractive forces of one transient dipole to another. The developed in silico 
model elucidated the most important driving forces in the complexation process, 
namely hydrophobic interactions, electrostatic interactions, van der Waals interac-
tions, and hydrogen bonding (113). Hydrophobic interactions and van der Waals 
interactions are the main driving forces in the process of binding, while hydrogen 
bonding and electrostatic interactions play a role in stabilizing the formed inclusion 
complex by establishing and maintaining the binding and dissociation equilibrium. 
However, the presented model has its weaknesses, mainly in its dataset size, which 
needs to be larger in order to generalize the conclusions. In addition, there is a 
skewed distribution of the observed stability constant values, so R2 values are rela-
tively lower in comparison to models obtained for organic compounds found in the 
literature (107, 113). 

Further, Merzlikine et al. developed machine learning models based on Cubist 
and Random Forest to evaluate the complexation between small organic molecules 
and β-CD (114). 

In order to preclude the calculation of the optimal molecular geometry and develop 
the QSPR model in a shorter time frame, Veselinović et al. constructed a model using 
SMILES attributes as a representation of the molecular structure and Monte Carlo 
simulation method (115). The study results labeled the Monte Carlo method as prom-
ising computational methods in the QSPR. A few years later, SMILES strings were 
used in combination with non-linear MARSplines (multivariate adaptive regression 
splines) methodology for the purpose of quantifying the stability constant values of 
a variety of molecules toward β-CD (116). As in the previously discussed papers, 
the hydrophobic nature of the CD cavity, as well as the importance of hydropho-
bic effects, was confrmed. Apart from predicting the affnity of guest molecules 
to β-CD cavity, the developed QSPR model could be applied to classify the com-
pounds into types according to the Biopharmaceutical Classifcation System, since it 
is known that permeability of the drug is affected by its hydrophobicity (116). When 
discussing different application felds of in silico models, it is worth mentioning the 
recent study performed by Ling et al. Ling et al. developed a QSAR model to predict 
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the adsorption behavior of micropollutants from water to CD as adsorbent during the 
water treatment process (117). 

However, when dealing with β-CD usage in chromatography, Šoškić et al. reported 
the development of QSPR models relating physicochemical and structural attributes 
to retention factors of 31 indole derivatives. Retention factors were obtained by HPLC 
with a stationary phase composed of immobilized β-CD, so that inclusion complexes 
are mainly formed between solute and stationary phase (118). The results show that 
the stability of the formed inclusion complexes is affected by the joint infuence of 
hydrophobic interactions and hydrogen bonds formed between β-CD in the stationary 
phase and indole derivatives. 

On the other hand, as previously mentioned, Maljurić et al. reported the develop-
ment of a QSRR model in RP-HPLC modifed by the addition of β-CD in the mobile 
phase. Risperidone with its structurally related impurities, as well as olanzapine 
with its structurally related impurities, represented a model mixture for investigating 
β-CD complexation process. Although the QS(P)RR methodology has been exten-
sively used in characterizing β-CD complexation with various compounds, Maljurić 
et al. were the frst to use molecular descriptors, complex association constants, and 
experimental parameters as inputs of the QSRR model. Introducing complex associ-
ation constants as descriptors of the formed inclusion complexes highly contributed 
to the predictive power of the developed models and their future applicability (10). 

3.5.1 aPPlying the qsrr in green rP-hPlC methoD DeveloPment 

Adding CDs to the mobile phase leads to the development of green chromatographic 
methods. Moreover, an additional component contributing to the greening concept 
is the construction of QSRR models able to explain the retention behavior in a given 
system. Therefore, such models could be used in the HPLC method development 
for separation of the investigated model mixture. In that sense, the HPLC method 
is additionally improved in terms of eco-friendly character since experiments are 
replaced with the modeling approach. The scientifcally based approach in method 
development results in continuous improvement and operational excellence. It would 
be best if the ecologically acceptable method and potential optimal separation condi-
tions could be selected by using an in silico approach, without experimentation (119). 

The development of QSRR models explaining the retention behavior of risperi-
done, olanzapine, and structurally related impurities in β-CD modifed RP-HPLC 
performed by Maljurić et al. (10) was previously explained in subsection 3.4. The 
obtained models enabled optimization of separation conditions for a given set of ana-
lytes by means of response surfaces. Certain goals regarding the retention factor and 
resolution values were defned, while response surface plots were constructed based 
on the developed network. When selecting the region of factors fulflling the defned 
goals, the error of the constructed network should not be neglected. A combination 
of factors should be chosen in a manner to give solutions better than the defned 
acceptance minimum. 

The constructed network enabled discussion of how each of the investigated 
experimental parameters, as well as molecular descriptors and association constants, 
infuence the retention of the investigated compounds. Response surface plots in 
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Figure 3.4 show the predicted retention factor of a compound against the most infu-
ential experimental parameters, namely acetonitrile content in the mobile phase 
and pH of the aqueous part of the mobile phase. These parameters were considered 
critical in terms of separation. Detailed analyses of the obtained response surface 
plots (Figure 3.4) enable speed-up and effcient selection of optimal separation con-
ditions for both risperidone and its impurities and olanzapine and its impurities, 
thus encouraging effcient and rational method development. Moreover, to determine 
the infuence of β-CD concentration in the mobile phase, response surface plots of 
the predicted retention factor of each of the investigated compounds against β-CD 
concentration and pH (Figure 3.5), as well as β-CD concentration and acetonitrile 
percentage (Figure 3.6) were constructed. Response surface plots revealed similar 
retention behaviors among risperidone and its related impurities. Retention factors 
increased with a lower β-CD concentration across the whole investigated pH range 
(Figure 3.5). There is an obvious interaction between the infuence of β-CD concen-
tration and acetonitrile, explaining its joint or competitive effect on retention (Figure 
3.6). Retention factors of olanzapine and its impurity C are lower if pH is low, but 
with high concentrations of β-CD in the mobile phase (Figure 3.5). However, the 
3D response surface also shows variable retention behavior of impurity B at differ-
ent pH in dependence of β-CD, which was unexpected due to its non-ionized form 
across the investigated pH range (Figure 3.5). When discussing the changes in the 
retention factor against acetonitrile content and β-CD concentration in the mobile 
phase, it can be seen that in the case of olanzapine and its related impurities, high 
acetonitrile content and β-CD concentration are associated with lower retention fac-
tors (Figure 3.6) (11). 

POL, SEV, DEN, and log P, which were labeled as the most infuential molecu-
lar descriptors, showed the same effect on retention (Figure 3.7). Retention factor 
values decrease with an increase in each of these parameters. Compounds char-
acterized as lipophilic (high log P values) are retained longer on the stationary 
phase than hydrophilic compounds, but it is also known that a hydrophobic CD 
cavity is an excellent microenvironment for hydrophobic compounds. Therefore, 
the increase in log P values, namely the hydrophobicity of the compound, favors 
the binding with CD and decreases its retention time. POL is a tensor known as an 
important electronic parameter with an impact on chemical interactions (120), so it 
was expected that a higher value would lead to a decrease in retention factor value. 
The same trend can be seen in the case of DEN. As dipole–dipole interactions are 
one of the recognized driving forces in complexation, higher DEN values would 
encourage the inclusion complex formation, thus reducing the retention factor of a 
complexed solute. Solvent exclusion effect is one of the major components of hydro-
phobic effect (121), thus higher SEV values contribute to hydrophobic interactions, 
also labeled as one of the most important interactions in the complexation process. 
When analyzing the relation of the complex association constant to the retention of 
the investigated solutes, the retention factor is directly proportional to the values of 
BE and UE, while inversely proportional to the values of BE. Thermodynamically 
stable inclusion complexes are those with the lowest BE; therefore, an increase in 
BE causes the instability of inclusion complexes and thus an increase in retention 
factor is expected. Nevertheless, the authors hypothesize that the increase in EE 
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FIGURE 3.4 3D response surface plots of predicted retention factor against acetonitrile 
content in the mobile phase and pH 

From Maljurić, N. et al., Analytical and Bioanalytical Chemistry, 410, 2533—2550, 2018., reused 
with publisher’s permission. 
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FIGURE 3.5 3D response surface plots of predicted retention factor against β-CD concen-
tration in the mobile phase and pH 

From Maljurić, N. et al., Journal of Chromatography A, 1619, 460971, 2020., reused with publisher’s 
permission. 

and UE encourages the inclusion of complex formation and consequent reduction 
in retention factor. 

3.5.2 qsrr moDel as a Potential tool in the 

ChromatograPhiC Determination of stability Constants 

anD aCComPanying thermoDynamiC Parameters 

The QSRR model developed by Maljurić et al. was used to predict retention factor 
values of each substance from the model mixture under the defned ranges of β-CD 
concentration and varying column temperature. Predicting the change in retention 
factor value is the basis for proposing a novel in silico approach to assess complex 
stability constants and accompanying thermodynamic parameters in RP-HPLC. The 
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FIGURE 3.6 3D response surface plots of predicted retention factor against β-CD concen-
tration and acetonitrile content in the mobile phase 

From Maljurić, N. et al., Journal of Chromatography A, 1619, 460971, 2020., reused with publisher’s 
permission. 

applied range of acetonitrile was quite narrow, since values lower than 15% (v/v) 
could unreasonably prolong the retention time, while percentages above 20% (v/v) 
could compromise the complexation equilibrium. 

The developed model successfully predicted the retention factors of all investigated 
compounds under the examined conditions. In this way, its applicability in predicting 
the retention change occurring upon complexation was confrmed. However, the gen-
eral rule for decreasing the retention factor with an increase in β-CD concentration 
was not strictly followed. In that manner, under certain conditions, stability constants 
for certain compounds could be calculated by tracking the decrease in retention factor 
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FIGURE 3.7 The effect of the most infuential molecular descriptors on retention factor 

values, but there were conditions under which an increase in β-CD concentration in 
the mobile phase led to the simultaneous increase in retention factor value. Then the 
authors tried to fnd reasons for such behavior by detailed analyses of experimental 
conditions and their relation to the complexation process. It was observed that the 
percentage of acetonitrile, as well as the pH of the aqueous phase, plays an impor-
tant role. Namely, if the acetonitrile content in the mobile phase is 15% (v/v), stabil-
ity constants of inclusion complexes formed between β-CD and risperidone and its 
structurally related impurities could be calculated on the basis of QSRR predicted 
retention factor change, regardless of the pH values of the aqueous phase. However, 
this is not the case if the acetonitrile percentage is increased to 20% (v/v). In such an 
experimental setting, the retention factor of risperidone decreased with an increase in 
β-CD concentration only if pH was 2, while retention factors of risperidone impurities 
increased if the β-CD concentration was 10 mM or higher. Consequently, if the reten-
tion factors of the investigated analytes increase with an increase in β-CD concentra-
tion, the assessment of complex stability constants is disabled (11). 

In the case of olanzapine inclusion complexes with β-CD, only one combination 
of experimental parameters enabled the expected trend in retention factor values 
and consequent calculation of complex stability constants. It was proven by both 
HPLC experiments and the developed QSRR model that stability constants could 
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be determined if acetonitrile is set to 15% (v/v) and pH to 2.0. Further, the stability 
constants for complexes formed between olanzapine impurity B and β-CD were suc-
cessfully calculated at any pH value if the acetonitrile content in the mobile phase is 
15% (v/v). On the other hand, if acetonitrile content is 20% (v/v), complex stability 
constants could not be assessed if pH is set to 5. This observation was unexpected, 
since olanzapine impurity B is in its non-ionized form across the investigated pH 
range. However, it helped to create the opinion that analyte structure is not the only 
factor infuencing the complexation and retention behavior in such a complicated 
chromatographic system. 

Although in the case of all previously mentioned analytes, it seemed that aceto-
nitrile infuence is stronger than pH, in the case of impurity C:β-CD inclusion com-
plexes, stability constants could be calculated if pH is set to 2.0 or 3.5 regardless of 
the acetonitrile content in the mobile phase (11). 

In regular RP-HPLC systems, the solute’s retention behavior depends on the inter-
actions of its molecular structure with either the mobile or stationary phase, while 
in β-CD modifed RP-HPLC there is an additional component, the dissolved β-CD. 
Therefore, there is a possibility for the dissolved β-CD to form interactions with 
either solute or other components of the chromatographic system. There are different 
factors infuencing the binding process between the guest molecule and β-CD cav-
ity, such as the molecular structure of the compound, the type of additives applied 
and/or steric factor. Additionally, there is a need for a favorable net energetic drive 
force, which would be able to allocate the equilibrium in the direction of the complex 
formation (23). 

Based on the results of this study, the authors hypothesized that mobile phase 
pH infuences retention behavior to a large extent, since it determines the ionization 
form of the compound on the one hand and the ionization form of free silanol groups 
on the surface of the stationary phase on the other hand. If the mobile phase pH is 
lower than 3, stationary phase free silanol groups are non-ionized, thus not establish-
ing secondary interactions with the solute. If the solute is in its non-ionized form, 
it is retained more by the stationary phase; therefore, faster elution is accomplished 
by changing the pH and transferring the solute to the ionized form. This served 
the authors to explain the possibility of assessing stability constants if pH is 2 and 
acetonitrile content in the mobile phase is 15% (v/v). Under such conditions, second-
ary interactions with the stationary phase are reduced. Moreover, lower acetonitrile 
content is favorable in terms of complex formations, since the mobile phase remains 
polar and not a favorable environment to the apolar solute. 

The size match between the investigated solutes and β-CD cavity also appeared 
as an important factor in complexation, but not the leading one, since in the author’s 
previous research it was shown that risperidone and its impurities are only partially 
incorporated into the β-CD cavity (10). 

To provide proof of concept for the presented methodology, the authors performed 
certain verifcation experiments. As recognized methods for inclusion complex sta-
bility constant assessment, HPLC and UV/Vis experiments were performed and cal-
culated complex stability constants were compared to those obtained by utilizing 
the QSRR methodology. Figures 3.8 and 3.9 show the comparison between stability 
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constant values obtained by different methods. Stability constants obtained by HPLC 
experiments were in compliance with the QSRR predicted values under the same 
experimental setting. The UV/Vis method enabled confrmation of complex forma-
tion, even under the conditions precluding stability constant assessment with HPLC 
and QSRR approaches. Figures 3.8 and 3.9 show that although the numerical values 
of complex stability constants are not the same, their trend equals across different 
methodologies (11). Although the numerical values of complex stability constants 
should be unconstrained by the methodological approach applied, the literature 
search showed the opposite (32). 

Apart from its ability to predict retention change caused by inclusion complex-
ation, the QSRR model was also used to provide information about thermodynamic 
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FIGURE 3.8 Complex stability constants calculated by HPLC experiments, QSRR model, 
and UV/Vis spectroscopy for complexes formed between risperidone and its impurities and 
β-CD under varying acetonitrile content in the mobile phase. 

8a: Risperidone—β-CD complex, if content of acetonitrile in the mobile phase is 15% (v/v) 
8b: Risperidone—β-CD complex, if content of acetonitrile in the mobile phase is 20% (v/v) 
8c: Risperidone impurity 1—β-CD complex, if content of acetonitrile in the mobile phase is 15% (v/v) 
8d: Risperidone impurity 2—β-CD complex, if content of acetonitrile in the mobile phase is 15% (v/v) 
8e: Risperidone impurity 3—β-CD complex, if content of acetonitrile in the mobile phase is 15% (v/v) 

From Maljurić, N. et al., Journal of Chromatography A, 1619, 460971, 2020., reused with publisher’s 
permission. 
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FIGURE 3.9 Complex stability constants calculated by HPLC experiments, QSRR model, 
and UV/Vis spectroscopy for complexes formed between olanzapine and its impurities and 
β-CD under varying acetonitrile content in the mobile phase 

9a: Olanzapine—β-CD complex, if content of acetonitrile in the mobile phase is 15% (v/v) 
9b: Olanzapine impurity B—β-CD complex, if content of acetonitrile in the mobile phase is 15% (v/v) 
9c: Olanzapine impurity B—β-CD complex, if content of acetonitrile in the mobile phase is 20% (v/v) 
9d: Olanzapine impurity C—β-CD complex, if content of acetonitrile in the mobile phase is 15% (v/v) 
9e: Olanzapine impurity C—β-CD complex, if content of acetonitrile in the mobile phase is 20% (v/v) 

From Maljurić, N. et al., Journal of Chromatography A, 1619, 460971, 2020., reused with publisher’s 
permission. 

parameters under experimental conditions, enabling the calculation of complex stabil-
ity constants. High negative values of ΔH° surpassing negative values of ΔS° character-
izing the complexation of risperidone and/or its impurities with β-CD are indicating 
the formation of van der Waals interactions. There was only one exception for impu-
rity 3:β-CD complex under one set of experimental conditions, where ΔS° are highly 
negative but could be attributed to intermolecular hydrogen bonding. Olanzapine com-
plexation with β-CD is also enthalpy driven, with negative ΔG values referring to the 
spontaneous fow of the process. However, in the case of olanzapine impurities com-
plexation ΔS° values are positive, while ΔH° is highly negative. This means that the 
formed inclusion complexes are not destabilized by hydrogen bonding and impurities 
are better accommodated in the cavity in comparison to olanzapine (11). 
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3.6 FUTURE PERSPECTIVES 

The diffculties in modeling retention in systems, such as β-CD modifed RP-HPLC, 
arise from multiple interactions in which a solute is capable of forming, with the 
stationary phase, mobile phase and β-CD dissolved in the mobile phase. In addition, 
the possibility of a solute to interact with β-CD adsorbed onto the stationary phase 
surface should not be neglected. Using risperidone, olanzapine, and their structur-
ally related impurities as model substances, Maljurić et al. successfully developed 
a QSRR able to reveal retention behavior of given solutes in such a complicated 
RP-HPLC system. The novelty of the modeling approach Maljurić et al. applied was 
refected in introducing complex association constants as descriptors characterizing 
the formed inclusion complexes, as inputs of the QSRR model. After verifying the 
model’s validity and predictive ability, it was successfully used in the green chroma-
tography RP-HPLC method development. The RP-HPLC methods for separation of 
given analytes were sped up; thus, the organic solvent consumption was reduced and 
methods were labeled as eco-friendly. 

Apart from applying the model in green RP-HPLC method development, it could 
be used as an in silico tool in the assessment of inclusion complex stability and 
accompanying thermodynamic parameters. The benefts of this approach account 
for savings in terms of time and costs since the in silico approach could successfully 
replace the experimental one. Although relatively similar results were obtained with 
RP-HPLC experiments and QSRR model prediction, the suitability of retention fac-
tor change as a measure of inclusion complex stability should be reassessed, since 
the expected decrease in retention factor upon the increase in β-CD concentration 
was not observed under a broad range of experimental parameters. However, these 
observations also brought another beneft of applying the QSRR model, which is to 
defne the experimental space within which interactions leading to complexation 
would be the dominant ones and thus stability constants and thermodynamic param-
eters could be calculated. 

The presented results provide a good basis for further research, but the conclusions 
cannot be generalized due to the limited number of analyzed compounds. In order to 
obtain more general conclusions, the model mixture should be complemented with 
compounds of varying ability to form inclusion complexes, specifcally those with 
different physicochemical characteristics, especially lipophilicity and ionization 
ability. Since retention behavior is dependent not only on experimental parameters 
but also on analyte characteristics, a broad range of characteristics should be covered 
to provide the rationale for the observed phenomena, which is not in line with the 
recognized theory of the abovementioned β-CD modifed RP-HPLC systems. 

Throughout the literature, the adsorption of the CD onto the stationary phase 
surface was considered negligible. However, the adsorption of a free CD, as well as 
formed inclusion complexes, could infuence the retention behavior. For that reason, 
in future research, the adsorption of the CD onto the stationary phase surface should 
be evaluated and incorporated in the QSRR model. Therefore, its infuence on reten-
tion behavior, as well as joint infuence with other parameters, could be observed. 
In this way, researchers could obtain additional information, enabling them to 
immerse themselves more deeply into the occurring retention phenomenon. When 
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all the components of this complicated chromatographic system are well assessed, 
the proper application of developed QSRR models could be recommended and help 
both the research community and industries in replacing extensive experiments with 
an in silico approach. 
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4.1 INTRODUCTION 

Use of one-dimensional (1D) chromatography is ubiquitous in a variety of felds, 
such as forensics, environmental science, metabolomics, fuel quality, and food 
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analysis, for its ability to resolve complex mixtures into their individual components. 
Specifcally, gas (GC) and liquid (LC) chromatography are commonly used to char-
acterize the respective volatile and non-volatile components of a sample. Depending 
on the analysis goal, either chromatographic platform can be used to fully resolve 
a specifc analyte (or set of analytes) or provide a fngerprint of the entire sample. 
Hence, these chromatographic platforms must have a high resolving power to effec-
tively achieve these goals. The resolving power for a separation can be measured 
through its peak capacity, which defnes the maximum number of resolvable peaks 
in a separation. In this context, peaks refer to distinguishable concentration pulses 
that may be composed of one analyte or multiple analytes. As a result, the num-
ber of peaks observed for a given chromatogram is always less than or equal to 
the number of analytes (i.e., components) in the sample matrix. In 1983, Davis and 
Giddings developed statistical overlap theory to describe the relationship between 
analyte overlap and peak capacity [1]. This theory suggests that the peak capacity 
of 1D separations is inadequate for the separation of multicomponent mixtures [1]. 
For example, if the number of analytes in a sample equals the peak capacity of the 
1D chromatographic instrument (i.e., a saturation factor of 1), then the maximum 
number of resolvable peaks equals 37% of the peak capacity [1]. Even worse, the 
maximum number of pure, single-analyte peaks equals 18% of the peak capacity 
under the same conditions [1]. Therefore, technological advancements in 1D separa-
tions have focused on providing higher peak capacities to increase the probability of 
resolving complex samples containing hundreds of components. However, despite 
the improvements in peak capacity for 1D chromatography, most of the compounds 
in these highly saturated samples remain unresolved. 

Considering the instrumental and statistical limitations of 1D chromatography, 
the development of comprehensive two-dimensional (2D) chromatography (such as 
GC  ×  GC and LC  ×  LC) provides an intriguing means of generating high peak 
capacities. Comprehensive 2D separations occur when the entire effuent from the 
primary separation is continuously sampled, reinjected, and separated on a second-
ary column. While any two separation techniques can be coupled together to yield 
a comprehensive 2D separation, LC × LC and GC × GC are the prominent methods 
employed in the literature and thus the focus of this chapter. The frst LC × LC sepa-
ration was demonstrated by Erni and Frei in 1978 [2], which was later improved upon 
by Bushey and Jorgenson in 1990 [3]. Meanwhile, the frst GC × GC instrument was 
developed by Liu and Phillips in 1991 [4]. These initial reports demonstrated that 
comprehensive 2D chromatography was a powerful technique for the separation of 
complex samples due to its increased peak capacity and increased selectivity relative 
to 1D chromatography. For example, the ideal peak capacity of a comprehensive 2D 
separation is simply the product of the peak capacities on both dimensions. Klee 
et al. showed that an ideal GC × GC separation provides a ~ 10-fold increase in 
peak capacity over its 1D counterpart [5]. Likewise, Stoll et al. demonstrated that 
for a separation longer than 10 min, the peak capacity of LC × LC is far superior 
to a fully optimized 1D-LC separation [6]. To achieve these near-ideal increases in 
peak capacity, the separations in each dimension should be complementary and suf-
fciently independent, which in some cases can provide compound group-type sepa-
rations that aid in the interpretation of these chromatograms. Given the increased 
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resolving power, the use of comprehensive 2D chromatography in the felds men-
tioned earlier is growing. 

While the instrumental technology and operation have improved, the general 
designs of these instruments are still similar to their initial reports [2–4]. Indeed, 
comprehensive 2D chromatography relies upon the use of a modulator. The modula-
tor serves as an injection interface that periodically samples the frst dimension (1D) 
column effuent and reinjects it onto the head of the second dimension (2D) column 
in a sharp pulse. For a separation to be suffciently comprehensive, each 1D peak 
must be sampled a minimum of 2–4 times [7,8]. The time between sampling events 
is denoted by the modulation period, PM. The use of a short PM ensures that the reso-
lution of the separation that was achieved on 1D is not seriously degraded because 
of undersampling. For GC × GC (Figure 4.1), fast 2D separations are achieved with 
short columns and fast temperature programming, which allows for the PM to gener-
ally range from 1–6 s. Similarly, for LC × LC, the use of shorter columns, smaller 
particle sizes, higher temperatures, and fast mobile phase gradients allow for the PM 

to generally range from 15–30 s. Note that while a longer PM for LC × LC separa-
tions ensures that the unique selectivity of the 2D column will be utilized, it can 
still result in undersampling. Given the fast 2D separation, the detector must be fast 
enough to record the signal, whereby the general aim is to obtain at least 10–20 
data points across the 2D peak width to produce high-quality data. The resulting 
data array, which is monitored on either a univariate or multivariate detector, can be 
transformed into a 2D chromatogram by cutting the data array at the time of each PM 

sampling event (Figure 4.1). The data can be visualized as a 2D contour plot, where 
the x-axis and y-axis describe the 1D and 2D separation times, respectively. 

Despite the obvious analytical advantages of applying comprehensive 2D sep-
arations, the information-rich data produced from these platforms can be large 
(approximately 50–500 MB per fle) and complex. Conventional data analysis 
approaches involve an analyst manually identifying, quantifying, and determining 
the signifcance of every peak in the chromatogram. Because each chemical com-
pound typically results in 2–4 peaks in sequential 2D chromatograms, this means 
that conventional analysis is often not feasible for comprehensive 2D separations. 
Co-eluting compounds can complicate the ability to obtain an accurate identifcation 
and quantitation for an analyte. Furthermore, hands-on data analysis can be nearly 
impossible for the size and complexity of a 2D chromatogram, much less for mul-
tiple replicates or different samples. Therefore, advanced computational algorithms 
(i.e., chemometrics) can be used to obtain the same, if not better, results with less 
analyst intervention compared to manual approaches in a shorter amount of time. 
Here, chemometrics refers to the use of linear algebra and statistical methods to 
extract meaningful chemical information from analytical data sets. Traditionally, the 
application of chemometrics to chromatographic data has been limited to “in-house” 
analysis, involving data manipulation in a programming software like MATLAB, 
R, or Python. While the need for chemometrics implementation with comprehensive 
2D separation data has been recognized for nearly two decades [9], the special-
ized expertise needed to analyze data in these programs has been a major obstacle 
for the widespread adoption of comprehensive 2D chromatography and chemo-
metrics. Fortunately, chemometric methods are becoming more incorporated into 
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FIGURE 4.1 Schematic of a typical GC × GC instrument and the data collected. The modu-
lator is used to collect fractions of the 1D effuent and reinject those fractions onto the 2D 
column. Either a univariate or multivariate detector records the analytical signal for each 
analyte in a vectorized form. The vectorized chromatogram can be cut into segments, based 
on the modulation period (PM), and stacked side-by-side. From here, the chromatogram can 
either be visualized as a three-dimensional plot or a contour plot. 

commercial and open-source software packages for GC × GC and LC × LC analysis, 
providing equitable and easier use [10]. 

Given these recent developments, this chapter aims to describe the capability, per-
formance, and limitations of common chemometric methods for chromatographic 
data analysis. First, instrumentation and preprocessing considerations for obtaining 
and handling GC × GC and LC × LC data will be discussed since these platforms are 
routinely used for comprehensive 2D chromatography. Furthermore, these experi-
mental decisions can have the greatest effect on the success of chemometric models. 
The chemometric methods discussed for the analysis of GC × GC and LC × LC data 
will be broken down into two categories, targeted and non-targeted, based upon the 
analytical objective (Figure 4.2). Targeted analysis refers to the identifcation and 
quantitation of pre-selected (known) analytes of interest. Generally, if the analytes of 
interest are well-resolved in the chromatogram, or effectively so due to the selectivity 
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FIGURE 4.2 Overview of chemometric methods based on their approach and analytical goal. 

provided by the detector employed, then advanced chemometrics is unnecessary. 
However, if the analyte is in a region with low chromatographic resolution, tradi-
tional identifcation and quantitation efforts will be severely hindered. Chemometric 
decomposition of this region can be benefcial in extracting the pure signal for the 
specifed analyte. Herein, two decomposition methods, multivariate curve resolution-
alternating least squares (MCR-ALS) and parallel factor analysis (PARAFAC), will 
be discussed. On the other hand, non-targeted analysis, also referred to as discovery-
based analysis, aims to categorize samples and discover compounds responsible for 
sample differentiation. Non-targeted chemometric techniques can be further catego-
rized as unsupervised or supervised, depending upon whether the method leverages 
class-based information based upon the experimental design. Unsupervised, non-tar-
geted methods discussed herein are principal components analysis (PCA) and clus-
tering algorithms, while supervised methods like Fisher-ratio analysis, partial least 
squares (PLS) regression, and partial least squares-discriminant analysis (PLS-DA) 
will be covered. While this chapter will discuss these methods in their respective 
groups (Figure 4.2), these methods can be applied in any order, depending upon the 
analytical objective. For example, the resulting quantitative information gained from 
targeted methods can be used to build non-targeted models, or in contrast, targeted 
methods can be developed to identify and quantify analytes based upon the fndings 
of non-targeted methods. 

4.2 INSTRUMENTATION AND DATA PREPROCESSING 

The selection of modulator, detector, and experimental design will result in a data 
structure for a single sample run to be either second-order or third-order, where 
the respective data structure can be described as a matrix or cube (Figure 4.3). In 
general, use of a univariate detector in the instrumental design will produce sec-
ond-order data, describing the separation time on both dimensions. Likewise, cou-
pling a multivariate detector to a comprehensive 2D separation produces third-order 
data, where the three axes describe the separation time on both dimensions and the 
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FIGURE 4.3 Schematic of the different dimensionalities for comprehensive 2D chromatographic data. Second-order and third-order data are 
produced when comprehensive 2D chromatograms are collected with univariate and multivariate detectors, respectively. The dimensionality of the 
data can be increased by analyzing multiple samples simultaneously. 



 

 

 
 
 

 
 

151 Comprehensive Two-Dimensional Chromatography 

spectra recorded. Higher-order data can be achieved either by analyzing multiple 
samples together or using multiple detectors (Figure 4.3). The order and quality of 
the data produced from a comprehensive 2D separation is the most decisive step in 
selecting the appropriate chemometric method(s) for later analysis. However, while 
the instrumental design can produce higher-order data, its operation may not allow 
for the analyst to fully utilize second-order and third-order chemometric advantages. 
To realize these advantages, the data must be either bilinear or trilinear, meaning 
that each data dimension (two for second-order data or three for third-order data) is 
linearly independent and analytes have suffciently reproducible peak shapes, reten-
tion times, and concentration-dependent signals. Thus, prior to defning a chemo-
metric objective (Figure 4.2), the frst goal for the analyst is to produce high-quality 
bilinear or trilinear data. This section will discuss how modulators, detectors, and 
preprocessing methods can affect and improve the quality of the data. 

4.2.1 gC × gC instrumentation 

Modulators for GC × GC can be broadly classifed into two groups: thermal modu-
lators and fow modulators, also known as valve-based or pneumatic modulators. 
Thermal devices change the temperature on a section of column or a dedicated trap-
ping capillary to modulate analyte introduction to the 2D column. Since the introduc-
tion of the frst GC × GC instrument [4], thermal modulation has enjoyed signifcant 
development and commercialization, leading to reliable and effective designs such 
as the jet-cooled cryogen modulator designed by Ledford [11]. Although a power-
ful and effective approach, thermal modulators, especially those that use cryogens, 
have high capital and operating costs. Conversely, fow modulators use one or more 
valves to divert, collect, or temporarily stop the 1D gas fow and thus effect modula-
tion. Flow modulation was introduced in 1998 [12] as a simpler, more cost-effective 
alternative to thermal modulation. Following extensive research and development 
[13–16], fow modulation has been demonstrated as a reliable and effective alter-
native to thermal modulation, and many designs are now commercially available. 
The disadvantages of fow modulation relative to thermal modulation include more 
challenging method optimization, the generation of high fow rates on the 2D, and in 
some cases, only partial transfer of the 1D material onto the 2D (duty cycle < 100%). 
For further discussion on the operation of thermal and fow modulators, the reader is 
directed to a recent review [17]. 

While thermal or fow modulation can both be used to generate GC × GC separa-
tions, the specifc design and operation of a given modulator can affect the degree to 
which the data follows a bilinear (or trilinear) structure. For each PM, thermal modu-
lators focus an analyte in the 1D effuent into a narrow pulse that, when injected onto 
the 2D column, generally results in detected peak profles that are more likely to ft a 
bilinear model. In contrast, fow modulators sample slices of the 1D peaks, and due to 
the absence of a thermal focusing stage, the concentration pulse delivered to the 2D 
column can maintain to some extent the shape of the fraction of the original 1D peak 
profle [18]. As a result, the 2D peak maximum may appear to shift between modula-
tions, which deviates from the bilinear model. The deleterious effect of non-focusing 
modulation can be largely mitigated by sampling each 1D peak many times or by 
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employing chemometric methods that do not have a strict bilinearity requirement for 
the 1D or 2D. Another deviation from bilinearity (or trilinearity) occurs when the 2D 
retention time of a given analyte decreases between successive modulations because 
of the slight increase in oven temperature between modulations [19]. This effect is 
most pronounced for peaks with narrow 2D widths and is mitigated by employing 
fast modulation periods (PM < ~3 s) with short 2D columns with thin stationary phase 
flms, which ensures that the change in oven temperature between modulations is 
minimized and that the 2D retention factors of analytes are kept relatively low [19,20]. 

As a result of the fast 2D column separations, the 2D peak widths for GC × GC 
range from tens to hundreds of milliseconds. Therefore, suitable detectors for 
GC × GC are limited to those that can both quickly respond to the changing input 
chemical concentration(s) and then rapidly convert the chemical concentration into an 
electronic signal measurement. The former is the primary constraint, which requires 
small detector volumes for ionization-based detectors or fast mass-to-charge (m/z) 
acquisition speeds, for mass spectrometry (MS) detection. Flame ionization detec-
tion (FID) is perhaps the most used detector in 1D-GC and, given its fast ionization 
mechanism and small internal volumes, is an excellent option for univariate GC × GC 
detection. However, with FID, analyte identifcation is fully reliant on matching reten-
tion times of sample peaks to a known standard. When high selectivity and compo-
nent identifcation are desired, MS detection is indispensable. Time-of-fight mass 
spectrometry (TOFMS) is the ideal choice for GC × GC since entire mass spectra 
can be acquired within microseconds [21]. Both high resolution (HR-TOFMS) and 
different MS ionization methodologies have also been incorporated into GC × GC 
instruments for increased selectivity and identifcation capabilities [22,23]. Fast-
scanning quadrupole analyzers are occasionally used for GC × GC, due to their low 
cost relative to TOFMS [24]. However, unlike TOFMS, quadrupole analyzers do not 
scan all m/z simultaneously. As a result, spectral skew occurs, wherein later m/z are 
measured at a different analyte concentration than earlier m/z. Therefore, m/z which 
belong to the same analyte reach their respective maxima at different times. This 
effect decreases the bilinear or trilinear quality of GC × GC-MS data and can incur 
error in chemometric methods unless the skew is corrected [25]. 

4.2.2 lC × lC instrumentation 

Modulation techniques for LC × LC can be classifed as either passive or active, 
depending on how the 1D effuent is modifed before injection onto the 2D column. 
LC × LC separations have conventionally utilized passive modulation, where the 1D 
sample fraction was transferred without any change in volume or concentration [26]. 
The interface for passive modulation consists of either an 8- or 10-port valve with 
two identical storage loops that collect the 1D effuent in one loop as the contents 
of the second loop are injected onto the 2D column. Both of the original LC × LC 
instruments utilized passive modulation [2,3]. However, peak deformation and/or 
splitting can occur with passive modulation due to the incompatibility of the mobile 
phases in both dimensions (i.e., the 1D effuent is the strong solvent for the 2D) [27]. 
To overcome this solvent mismatch issue, recent work has focused on developing 
active modulation techniques for LC × LC separations. 
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Active modulation methods adjust the matrix of the 1D sample fraction to pre-
vent solvent mismatch with the 2D separation [26]. One popular active modulation 
method is stationary phase assisted modulation (SPAM), which uses low-volume 
trap columns connected to the valve instead of the storage loops used with passive 
modulation [28]. The use of trap columns retains analytes from the 1D fraction as 
the mobile phase passes through to the waste. Once the valve switches, the gradient 
program for the 2D separation elutes the analytes from the trap columns as focused, 
concentrated bands. Another modulation approach aimed at resolving solvent 
incompatibilities is known as active solvent modulation (ASM) [29]. Like passive 
modulation, ASM utilizes an 8-port/2-position valve with storage loops to collect 1D 
fractions. However, the 1D effuent becomes diluted with the 2D mobile phase prior 
to the 2D separation. Both SPAM and ASM have been shown to improve detection 
sensitivity for LC × LC and allow for the 2D separation to occur on narrower col-
umns, allowing for fast separations in order to overcome undersampling [26,28,29]. 
Further descriptions of SPAM, ASM, and other active modulation techniques can be 
found in the literature [26,28,29]. 

Since new modulator and column technology has decreased the run time for the 
2D separations [26,30], detectors for LC × LC instruments must also have fast acqui-
sition speeds to adequately sample and record the resulting narrow peaks. Primarily, 
ultraviolet-visible (UV) detectors and mass spectrometers are used to collect the 
analytical signal from LC  ×  LC separations given their fast acquisition speeds. 
UV detectors, which have acquisition rates of up to 100 scans/s, can either mea-
sure analyte absorbance at a single wavelength or over a range of wavelengths. The 
latter, known as a diode array detector (DAD), provides ample UV spectra across 
the width of each chromatographic peak to aid in the analyte identifcation effort. 
These detectors provide both low detection sensitivity and high reproducibility while 
being relatively inexpensive compared to MS [30,31]. However, peak identifcation 
using LC × LC-DAD data is more reliant upon the chromatographic separation since 
compounds with similar functionalities can have similar UV spectra. On the other 
hand, quadrupole-time-of-fight MS (QTOF-MS) and tandem MS (MS/MS or MS2) 
with electrospray ionization (ESI) have been incorporated into LC × LC instruments 
because of their high sensitivity, selectivity, and ability to obtain a pure m/z for ana-
lyte identifcation even at low chromatographic resolution [32–34]. However, the 
main drawbacks of these MS detectors are the high costs associated with instrumen-
tation, upkeep, and signal suppression effects [35]. 

4.2.3 Data PreProCessing 

Prior to analyzing GC × GC or LC × LC data, some degree of data preprocess-
ing is generally required to remove chemically irrelevant variations in the signal to 
improve chemometric performance. Baseline correction, smoothing, normalization, 
and retention time alignment methods are commonly used for data preprocessing. 
Low-frequency detector noise (i.e., baseline drift) can be removed using baseline 
correction methods, which commonly subtract a ftted curve from the entire chro-
matogram or sections of the chromatogram. Smoothing methods, such as a Savitzky-
Golay flter, are used to reduce high-frequency noise and increase the S/N. These 
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two preprocessing methods must be carefully applied to prevent the loss of chro-
matographic signal and introduction of new artifacts, which can negatively impact 
chemometric performance. When comparing multiple replicates and/or samples, 
normalization and retention time alignment methods must be applied to reduce the 
inevitable variation from sample preparation and instrument operation. The use of 
internal standards or total area normalization, where the sum of the baseline cor-
rected signal acts as the normalization factor, are the most common normalization 
methods. Retention time alignment programs ensure that variables that correlate to 
the same peak are correctly compared and that the bilinear (or trilinear) nature of the 
data is preserved. A variety of retention time alignment programs have been devel-
oped for comprehensive 2D separations, such as piecewise alignment [36], 2D cor-
relation optimized warping [37], and dynamic time warping [38]. For data collected 
with a multivariate detector, algorithms can also use the collected spectra to improve 
the retention time alignment results [39,40]. Another method to resolve misaligned 
2D chromatographic data is to average (i.e., bin) the data along both separation axes. 
Here, the appropriate bin size should be large enough to encompass the peak widths 
on both dimensions as well as the observed shifting [41]. As a result, proper binning 
increases the S/N while reducing the overall size of the data, which improves compu-
tational speed and performance. However, if the chromatogram is not appropriately 
binned, then a loss in chromatographic resolution can be observed. 

For data collected with a high-resolution MS (i.e., HR-TOFMS for GC  ×  GC 
and QTOF-MS for LC × LC), additional preprocessing steps are necessary prior to 
data analysis. Since these detectors can have a resolution of 0.0001 amu, only mass 
channels (m/z) with measurable intensities are recorded, leading to unequally spaced 
masses for each scan. This data richness also leads to fle sizes per each sample sepa-
ration that can be minimally 500 MB but often much larger, which can be unman-
ageable for computers with limited memory. Two data compression approaches have 
been developed to convert raw data into a usable data format containing an equidis-
tant m/z dimension. The frst method is to bin the m/z dimension to a lower resolution, 
often down to unit resolution, making the analysis of the entire chromatogram more 
computationally manageable [42,43]. Based on these results, the analyst can then fur-
ther interrogate selected retention time or m/z regions using the higher resolution data, 
keeping a light computational load [42,43]. The bin size must be chosen to ensure 
that smaller peaks are not overlapped by larger coeluting peaks in the m/z dimen-
sion, causing the lower intensity peaks to disappear. The second strategy searches 
for “regions of interest” (ROIs) in the chromatogram based on three parameters: S/N 
threshold, minimum number of successive data points, and allowable mass deviation 
[33,44–46]. This approach ensures that the new data fle only contains the discovered 
ROIs, producing a chromatogram where each scan has the same measured m/z and 
the high resolution of that dimension has been preserved [33,44–46]. 

4.3 TARGETED ANALYSIS 

The primary goal of any comprehensive 2D separation is to identify and quantify 
analytes responsible for the similarities and differences in a data set. In targeted 
studies, the identity of these analytes of interest is known beforehand, and the com-
prehensive 2D separation is designed to chromatographically resolve each targeted 
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compound to the greatest extent possible. After the data are collected, the identity of 
the target analytes is confrmed via spectrum library matching and/or retention time 
indexing with analyte standards. Then, the peak heights/areas of each modulated 2D 
peak are summed together and analyte concentration is determined using the stan-
dard addition method, external standards, or internal standards [47,48]. However, 
the experimental design cannot always be optimized for all the target compounds 
of interest to be fully resolved, causing overlapped interferent signals to challenge 
identifcation and quantitation. Therefore, chemometric decomposition methods can 
be used to obtain pure chromatographic peak profles and spectra. It is important to 
note that chemometric decomposition has also been referred to as deconvolution in 
the literature. This section will focus on two popular decomposition methods: mul-
tivariate curve resolution-alternating least squares (MCR-ALS) and parallel factor 
analysis (PARAFAC). The operation of both methods is similar even though they 
have different data structure requirements. For example, both methods are tradition-
ally applied to relatively small 2D regions of the chromatogram instead of the entire 
chromatogram to lighten their computational load. Both MCR-ALS and PARAFAC 
also require the analyst to provide an estimate of the number of mixture compo-
nents separated in the selected time window (i.e., the rank of the data). Generally, 
the number of components is taken as the number of analytes present plus addi-
tional component(s) for the baseline/background noise. This estimate of the rank will 
remove background and noise from the pure component profles without the need 
for baseline correction steps. These methods then leverage information in each data 
dimension to mathematically resolve target and interferent signals. To develop an 
accurate decomposition model, the experimental design must ensure that the chro-
matograms adhere to either a bilinear or trilinear data structure. 

4.3.1 multivariate Curve resolution-alternating least 

squares (mCr-als) 

MCR-ALS is a bilinear decomposition method that extracts the pure component 
information for each dimension of second-order data [49–51]. Given the bilinearity 
requirement, MCR-ALS can be applied to comprehensive 2D separation data col-
lected with either univariate or multivariate detection. Comprehensive 2D chromato-
grams collected with univariate detectors (e.g., FID or UV at a single wavelength) 
are naturally second-order. However, in this case, the chromatographic data from 
univariate detectors must be aligned to minimize retention time shifting to ensure 
data bilinearity. To apply MCR-ALS to comprehensive 2D separations collected 
with multivariate detection (e.g., DAD or MS), the dimensionality of the data must 
be reduced prior to MCR-ALS. This data reduction can be achieved by analyzing 
individual modulations (i.e., the 2D separation) or unfolding the time dimension (i.e., 
concatenating each 2D separation together) while maintaining the spectra dimen-
sion. A beneft of applying MCR-ALS to chromatograms collected with multivariate 
detection is that alignment is not necessary because data bilinearity is supported by 
the reproducibility of the spectra dimension [52]. The MCR-ALS model can also be 
extended to simultaneously analyze multiple samples or replicates. For these higher-
ordered arrays, the time dimension for each sample would be unfolded and then 
those samples would be augmented together along the time axis (Figure 4.4). 
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FIGURE 4.4 Illustration of a two-component MCR-ALS model for comprehensive 2D 
chromatographic data collected with multichannel detection. Components 1 and 2 are high-
lighted in blue and yellow, respectively. MCR-ALS models can be constructed for single 
chromatograms (A) or chromatographic data sets with multiple samples (B). To ft the bilinear 
model, the time dimension of the chromatographic data was unfolded. 

The MCR-ALS model is represented as 

X R= ST + E (4.1) 

where X is the chromatographic data matrix, R and S are matrices containing 
the pure instrumental responses, and E is a matrix containing the residual errors 
[49–51]. In the context of a comprehensive 2D separation, the matrix R generally 
represents the resolved chromatographic elution profles (i.e., time dimension) for 
each modeled component. Likewise, the matrix S normally contains the pure spec-
tra for each component in the model. However, for data collected with univariate 
detection, the fnal matrices for R and S will contain the pure 1D and 2D chro-
matographic profles for each component modeled. Since MCR-ALS is an iterative 
method, the algorithm will alternate between the results in R and S to minimize 
the errors in E. Figure 4.4 illustrates the format of a two-component MCR-ALS 
model to analyze either a single chromatogram (A) or multiple chromatograms 
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simultaneously (B). The ease of obtaining pure information from the experimental 
data is dependent on the number of estimated components in the subsection of 
the chromatogram along with the S/N of the target analyte, its relative intensity, 
and extent of overlap with interferents. Using the model outputs, the pure elution 
profle and spectrum for each component can be used for quantitation and identi-
fcation, respectively. 

While MCR-ALS is a fexible decomposition model for various types of compre-
hensive 2D chromatographic data, it is possible that different solutions can be pro-
duced for the same matrix input and those solutions can ft the data equally well. This 
uncertainty is referred to as “rotational ambiguity,” and the extent of this uncertainty 
can be evaluated by fnding all possible, feasible solutions [53,54]. Proper initializa-
tion and selection of constraints can reduce the number of possible solutions, improv-
ing the ft of the MCR-ALS model. MCR-ALS initialization refers to providing the 
model of an initial estimate of a data dimension for each component. Typically, for 
chromatographic applications, initial estimates are provided for the spectrum of each 
modeled component. These initial estimates can either come from prior knowledge 
(e.g., the pure spectrum for the target analyte) or from algorithms designed to select the 
most dissimilar spectra in the original data. The most common initialization methods 
include simple-to-use self-modeling analysis (SIMPLISMA) [55], orthogonal projec-
tion approach (OPA) [56], and key set factor analysis (KSFA) [57]. Both OPA and 
KSFA can be performed in an iterative manner for further refnement of the spectra to 
be used as initial estimates [58–60]. Additionally, constraints place mathematical con-
ditions on the ft of R and S during the iterative optimization of the MCR-ALS model. 
The most commonly applied constraints for chromatographic data are non-negativity, 
ensuring that the elution profles have non-negative concentrations, and unimodality, 
ensuring only one peak maximum per component. Defning regions in the chromato-
graphic data with an absence of analytes (i.e., local rank constraints), concatenating 
replicates prior to decomposition, or using hard modeling can also be implemented 
to mitigate rotational ambiguities [54]. Additionally, application of a trilinearity con-
straint can be used to obtain essentially the same unique solution as higher-order 
decomposition models like PARAFAC (discussed in the next section) [54]. 

Decomposition methods such as MCR-ALS can readily improve the resolving 
power of a comprehensive 2D chromatogram. For example, Bailey et al. applied 
MCR-ALS to a subsection of a LC × LC-DAD separation of a human urine sample 
[61]. Figure 4.5A shows that this region of the chromatogram contains eight over-
lapped peaks (labeled), with some peaks having the same 1D and 2D retention times. 
Using an eight-component MCR-ALS model, the pure chromatographic profles 
and spectra were obtained (Figure 4.5B). Visual inspection of the frst, third, and 
ffth components were all found to contain pure peak profles while the background 
was modeled by the second and fourth components (Figure 4.5B). Interestingly, 
the sixth through eighth components contained contributions from multiple peaks 
(Figure 4.5B), hindering quantitation efforts [61]. These components were unable to 
be decomposed into their pure profles due to larger interferent signals drowning out 
lower intensity peaks (i.e., dynamic range issues) and the overlapped peaks having 
similar spectra (i.e., rank defciencies) [61]. 
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 FIGURE 4.5 MCR-ALS decomposition performed on a low chromatographic resolution 
region from a LC × LC-DAD separation of human urine. (A) A 2D contour plot of this section 
at 216 nm with the peaks of interest labeled. (B) MCR-ALS resolved chromatographic profle 
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FIGURE 4.5 (Continued) 
and spectrum for components in the model. The chromatographic axes in (B) are the same as 
the axes in (A). The wavelength range shown in (B) is 200–700 nm. 

This fgure was taken with permission from H.P. Bailey, S.C. Rutan, P.W. Carr, Factors that affect quanti-
fcation of diode array data in comprehensive two-dimensional liquid chromatography using chemometric 
data analysis, J. Chromatogr. A 1218 (2011) 8411–8422. https://doi.org/10.1016/j.chroma.2011.09.057. 

While dynamic range issues will always persist in real, complex samples, rank 
defciencies can be resolved with the use of a detector with complementary selectiv-
ity. Chemometric analysis of both LC × LC-MS and LC × LC-DAD data sets found 
that a higher number of components could reliably be discovered with MS given 
its ability to provide a more selective response for each analyte [62]. For illustra-
tion, Navarro-Reig et al. showed that MCR-ALS was able to resolve and aid in the 
identifcation of different triacylglycerol (TAG) isomers in a LC × LC-MS separa-
tion of corn oil [63]. Note, since TAGs are abbreviated according to the three fatty 
acids bonded to glycerol, this example will discuss TAGs composed of stearic acid 
(S), oleic acid (O), linoleic acid (L), and palmitic acid (P). Figure 4.6A shows the 
total ion current (TIC) chromatogram for a region of the separation, where two pairs 
of positional isomers (SLO/SOL and PLO/POL) are overlapped with one another. 
Despite four analytes being separated in this region, only three peaks can be seen 
(Figure 4.6A). Non-chemometric based (traditional) identifcation efforts for these 
peaks would be hindered by the low chromatographic resolution and similarity in 
their mass spectra. Therefore, MCR-ALS was used to produce the pure versions of 
their unfolded peak profles and spectra in Figure 4.6B-C. The resolved mass spec-
tra (Figure 4.6C) were then compared to a set of reference spectra (Figure 4.6D) to 
confdently identify the different isomers. Given the high-quality spectra produced, 
peaks 1 and 2 were identifed as SOL (black) and SOL (blue), respectively, while 
peak 3 was determined to be the coelution of POL (red) and PLO (green) [63]. 

4.3.2 Parallel faCtor analysis (ParafaC) 

PARAFAC is a trilinear decomposition method that can extract the pure instrumen-
tally obtained responses from third- or higher-ordered data sets [64]. In terms of com-
prehensive 2D separations, PARAFAC is commonly performed on chromatograms 
collected with multivariate detectors since the data structure is naturally third-order 
(1D time × 2D time × spectrum). For data collected using univariate detectors, mul-
tiple samples are required to create a third-order data structure (1D time × 2D time × 
samples). Compared to MCR-ALS, PARAFAC is advantageous for decomposition 
of comprehensive 2D separations since it does not require a reduction in data dimen-
sionality and the fnal solution in the model is unique. However, data submitted for 
PARAFAC modeling must be suffciently trilinear whereas MCR-ALS only requires 
bilinear data. The strict trilinear structure condition requires all the 2D peaks for a 
single 1D peak to be reproducible in terms of peak shape, width, and retention time 
(or at least not deviate greatly) and chemically selective information must be present 

https://doi.org/10.1016/j.chroma.2011.09.057
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FIGURE 4.6 MCR-ALS decomposition of four triacylglycerols from a corn oil sample that was separated using LC × LC-MS. (A) A 2D contour 
plot of the region of interest. (B) MCR-ALS resolved chromatographic prof les of the four triacylglycerols: SLO (blue), POL (red), SOL (black), and 
PLO (green). (C) MCR-ALS resolved mass spectra for the four triacylglycerols. Inserts: Zoom-in from 565–610 m/z to show the key ion fragments 
necessary for identif cation. (D) Reference mass spectra for each analyte, which was used in identif cation. 

This f gure was taken with permission from M. Navarro-Reig, J. Jaumot, T.A. van Beek, G. Vivó-Truyols, R. Tauler, Chemometric analysis of comprehensive 
LC × LC-MS data: Resolution of triacylglycerol structural isomers in corn oil, Talanta 160 (2016) 624–635. https://doi.org/10.1016/j.talanta.2016.08.005. 

https://doi.org/10.1016/j.talanta.2016.08.005
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in at least two of the data dimensions [19]. Given a chromatographic data cube X, 
consisting of elements xijk and F number of components (i.e., the rank of the data), the 
PARAFAC model can be expressed as 

x = 
F 

a b c  + e (4.2) ijk ˛ if jf kf ijkf =1 

where aif, bjf, and ckf are the elements of matrices A, B, and C containing the pure 
instrumental responses for each component and eijk are the elements of a three-way 
array, E, representing the residual error [64]. For comprehensive 2D data collected 
with multichannel detection, the columns of the matrices A, B, and C (the load-
ings) correspond to the chromatographic profles in both dimensions (1D and 2D) and 
the spectrum for each component modeled, respectively. Figure 4.7 demonstrates 
the construction of a two-component PARAFAC model to analyze a single com-
prehensive 2D chromatogram collected with multichannel detection. Likewise, the 
PARAFAC loadings for multiple replicates collected with univariate detection will 
correspond to the 1D, 2D, and sample dimensions. The model is achieved by using 
initial estimates for two dimensions and then applying alternating least squares to 
ft the remaining mode to obtain a solution where the residuals, eijk, are minimized. 

Selection of the number of components to model, initialization and stoppage val-
ues, and constraints are all necessary to execute PARAFAC modeling. Like MCR-
ALS, the number of components to model should equal the number of suspected 
analytes plus one or more for the background contributions. If too many components 
are used in the PARAFAC model, then the computational speed decreases and true 
analyte signals can be modeled by multiple components (i.e., splitting). Hoggard 
and Synovec defned the appropriate number of components to model as one fewer 
than the PARAFAC model with the observed splitting [65]. This method success-
fully created PARAFAC models for target analytes across a wide range of signal 
intensities (overloaded to low S/N) and could be applied in an automated fashion 
[65]. Split-half experiments can also help determine the correct number of compo-
nents to model [66]. Here, the chromatographic region is divided into two sections 
and PARAFAC models are created for both sections. If the number of components 
is selected correctly, the same loadings should be evident in the models of both data 

FIGURE 4.7 Illustration of a two-component PARAFAC model for comprehensive 2D 
chromatographic data collected with multichannel detection. Components 1 and 2 are high-
lighted in blue and yellow, respectively. 
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sets. Typically, random values or initial estimates from trilinear decomposition are 
used for initialization while the minimum of the residuals array (E) is a stoppage 
criterion. Unimodality and orthogonality constraints can help stabilize the solution 
while non-negativity ensures the loading vector should have positive signal [64]. 

Using the loadings matrices from a PARAFAC model, the traditional targeted analy-
sis workfow of analyte identifcation and quantitation follows. For visualization, Sinha 
et al. developed a PARAFAC model to resolve the analytical signal of trimethylsilylated 
(TMS) vanillic acid from the matrix components of human urine in a GC × GC-TOFMS 
chromatogram [67]. Visual inspection of the region surrounding vanillic acid (TMS) 
reveals that this analyte is overlapped with at least four interfering analytes (Figure 
4.8A). The resulting PARAFAC model decomposed the chromatographic region into 
the pure 1D peak profles (Figure 4.8B), 2D peak profles (Figure 4.8C), and mass 

FIGURE 4.8 PARAFAC decomposition of TMS-derivatized vanillic acid in human urine. 
(A) GC  ×  GC-TOFMS chromatogram at m/z 73, highlighting the low chromatographic 
resolution between vanillic acid (TMS) and four interfering components (labeled a–d). (B) 
PARAFAC resolved 1D chromatographic profles for this region. (C) PARAFAC resolved 2D 
chromatographic profles for this region. (D) PARAFAC resolved mass spectrum for vanillic 
acid (TMS) compared to its library reference spectrum. 

This fgure was taken with permission from A.E. Sinha, J.L. Hope, B.J. Prazen, E.J. Nilsson, R.M. Jack, 
R.E. Synovec, Algorithm for locating analytes of interest based on mass spectral similarity in GC × 
GC–TOF-MS data: analysis of metabolites in human infant urine, J. Chromatogr. A 1058 (2004) 209–215. 
https://doi.org/10.1016/j.chroma.2004.08.064. 

https://doi.org/10.1016/j.chroma.2004.08.064
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spectrum (Figure 4.8D) for TMS derivatized vanillic acid. The resolved mass spectrum 
for the vanillic acid (TMS) component was then compared to the library spectrum to 
confrm its identifcation (Figure 4.8D). For quantitation, the peak profle for vanillic 
acid (TMS) or any other component could be reproduced by the outer product of the 
vectors corresponding to the component of each loading matrix. 

While the previous example considered the targeted analysis of a single three-
way chromatogram (1D × 2D × m/z), PARAFAC modeling can also be applied for 
the analysis of four-way data sets if the data is quadrilinear. In these cases, the data 
dimensions are the 1D and 2D chromatographic peak profles, the signal collected 
from a multichannel detector, and the sample dimensions. The four loading matrices 
produced from the PARAFAC model will also represent each dimension. For exam-
ple, Porter et al. applied PARAFAC to a four-way data set of metabolites in mutant 
and wild-type maize [31]. Figure 4.9A shows an overlay of the LC × LC-DAD chro-
matograms at 220 nm for representative mutant (blue), wild-type (red), and indole 
standards (green). Given the complexity of the data analyzed, the chromatograms 
were divided into the sections outlined by the black boxes. For the purposes of this 
discussion, the four-way PARAFAC model is demonstrated on the section indicated 
by the arrow in Figure 4.9A. PARAFAC successfully decomposed this section into 
the pure 1D peak profles (Figure 4.9B), 2D peak profles (Figure 4.9C), spectra 
(Figure 4.9D), and concentrations measured for component in each sample (Figure 
4.9E). By looking at the concentration profles in Figure 4.9E, similarities and differ-
ences between the mutant (M1 and M2) and wild-type (Wt1 and Wt2) maize samples 
can be made. For instance, multiple components were found in higher abundance in 
the mutant samples instead of the wild-type samples (Figure 4.9E) [31]. Similarly, 
two compounds present in the standard (St) chromatogram (5-hydroxytryptamine in 
orange and indole-3-acetyl-l-lysine in pink) were also found in low abundance in the 
mutant samples (Figure 4.9E) [31]. 

Along with identifcation and quantitation, PARAFAC can also be used to evalu-
ate the trilinearity (or higher) of the chromatographic data structure [68–70]. The 
magnitude of retention time shifting between modulations to 2D peak width, referred 
to as the trilinearity deviation ratio (TDR), can predict the accuracy of PARAFAC 
models for quantitation [19,20]. Application of PARAFAC to non-trilinear data was 
shown to cause a negative bias, where true analytical signal that does not ft the 
model has been removed [19,20]. Furthermore, the trilinear nature can be assessed 
by comparing the loadings from PARAFAC to the experimental data by calculating 
two metrics, the lack-of-ft (LOF) and percent of explained variance (R2) [68–70]. 
Ideally, if the chromatographic data is trilinear, then the measured LOF and R2 will 
be 0% and 100%, respectively. As stated earlier, the experimental conditions have 
the greatest infuence on the trilinear (or bilinear) nature of the chromatographic 
data. For example, Prebihalo et al. demonstrated that GC × GC-TOFMS data is suf-
fciently trilinear (i.e., small TDRs and PARAFAC quantitation errors) with a small 
PM (~ 1–2 s) compared to relatively longer PM (~ 5–8 s), which are typically used [20]. 
In cases where the experimental design was not optimized to ensure a trilinear data 
structure, retention time alignment algorithms should be used to make the data more 
amenable to PARAFAC [40,68,71]. For instance, Allen and Rutan demonstrated that 
alignment improved the accuracy and reproducibility of quantitative PARAFAC 
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FIGURE 4.9 PARAFAC decomposition of metabolites in maize samples collected with LC × LC-DAD. (A) Overlaid chromatograms of repre-
sentative mutant (blue), wild-type (red), and standard (green) samples at 220 nm. PARAFAC results for the black box indicated by an arrow will 
be shown. (B) PARAFAC resolved 1D chromatographic prof les. (C) PARAFAC resolved 2D chromatographic prof les. (D) PARAFAC resolved 
spectrum for each component. (E) PARAFAC resolved concentration prof les for each component in the background (B), mutant (M1 and M2), 
standard, and wild-type (Wt1 and Wt2) samples. 

This f gure was taken with permission from S.E.G. Porter, D.R. Stoll, S.C. Rutan, P.W. Carr, J.D. Cohen, Analysis of four-way two-dimensional liquid chromatogra-
phy-diode array data: Application to metabolomics, Anal. Chem. 78 (2006) 5559–5569. https://doi.org/10.1021/ac0606195. 

https://doi.org/10.1021/ac0606195


 

 

  

 

 
 
 
 
 
 
 

 

 

165 Comprehensive Two-Dimensional Chromatography 

models for phenytoin in wastewater samples [40]. PARAFAC2 can also be used to 
analyze three-way chromatographic data that do not follow a trilinear nature. As a 
modifed version of PARAFAC, PARAFAC2 is less sensitive to misalignment, the 
main deviation from trilinearity, while still producing unique solutions for all three 
data dimensions [72]. 

4.4 UNSUPERVISED, NON-TARGETED ANALYSIS 

While targeted chemometric methods are benefcial in the identifcation and quan-
titation of previously known and anticipated analytes of interest, non-targeted 
approaches seek to discover relevant chemical features that describe the similarities 
and/or differences across multiple chromatograms. Non-targeted chemometric meth-
ods can be described as either supervised or unsupervised, where supervised meth-
ods depend upon a priori knowledge of sample classifcation. Supervised approaches 
(discussed later) are appropriate for handling classifcation and regression problems 
since these methods leverage class labels. In contrast, unsupervised models do not 
require knowledge of class memberships. Therefore, unsupervised approaches are 
suitable for exploratory data analysis, where the user aims to discover patterns and 
detect outliers in the data set. These unsupervised, non-targeted methods are typi-
cally the frst step in a chemometric workfow because they are simple, computation-
ally inexpensive, and provide visualization of the main attributes of the data. This 
section will cover three common unsupervised techniques for chromatographic data 
analysis: principal components analysis (PCA), hierarchical cluster analysis (HCA), 
and k-means clustering. PCA allows for the identifcation of features that accurately 
represent relationships between samples, whereas HCA and k-means clustering 
allows for the discovery of inherent groupings in unlabeled data. 

4.4.1 PrinCiPal ComPonents analysis (PCa) 

PCA is possibly the most applied exploratory data analysis technique because it 
reduces the chromatographic data down to only the variables that represent the varia-
tion and correlations in the data set. This data reduction is achieved by projecting 
the possibly correlated variables (i.e., peaks) in the data onto a new set of linearly 
uncorrelated variables called principal components (PCs) [73]. After the orthogonal 
transformation, these PCs are then ranked in descending order of explained variance. 
Therefore, PC 1 explains the maximum variability in the data, PC 2 explains the 
maximum variance not explained by PC 1, and so on. This process continues until all 
the variance in the data set has been explained or until an algorithmic stopping point 
has been reached [74]. In practice, only the frst couple of PCs that explain a propor-
tion of the total variance in the model will be kept and utilized for interpretation. 

The output of PCA is a decomposition model, which can be described as 

X TP E  (4.3) = + 

where X is the original chromatographic data matrix, T is the scores matrix, P is 
the loadings matrix, and E represents the unaccounted signal that remains. The data 
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matrix (X) must be a two-way array, where the rows represent the sample dimension 
and the columns are the variables. The variables can be either the data points for the 
completely unfolded chromatograms or tabulated peak areas. Note that multiway 
PCA [75] develops the same decomposition model as PCA but for third-order data, 
preserving chemical information that can be lost when reducing the dimensionality 
of 2D chromatographic data. An examination of the scores and loadings matrices 
can provide information on the similarities and/or differences between samples and 
chemically relevant analytes, respectively. The scores matrix (T) describes the coor-
dinates for each sample on the PC axis and the loadings matrix (P) highlights the 
peaks responsible for the variation described by each PC. Plotting the scores on PC 
2 versus the scores on PC 1, termed a scores plot, illustrates the relationship between 
samples in a data set. Ideally, similar samples should have similar scores while dis-
similar samples should be separated from one another on the scores plot. The sepa-
ration between these clusters can be quantifed using a variety of metrics such as a 
degree-of-class separation (DCS) metric [36,41], the Mahalanobis distance [76], and 
construction of confdence ellipses [77,78]. Furthermore, investigation of the load-
ings for each PC can determine the peaks responsible for the sample separation on 
the scores plot. For a given PC, peaks with positive loadings are more abundant in 
samples with positive scores while peaks with negative loadings are more abundant 
in samples with negative scores. 

Since PCA is extremely sensitive to all sources of variance, applying preprocess-
ing methods is essential for attaining chemically meaningful results. Along with 
using baseline correction and normalization techniques, retention time shifting 
should also be reduced. If chromatographic misalignment is not corrected for, then 
the frst few PCs can capture the variance due to shifting instead of the sample-
related variances that are of interest. The loading plots for those PCs will also show 
frst derivative Gaussian-like signals instead of chromatographic peaks due to reten-
tion time shifting [79]. Therefore, a strategy to mitigate chromatographic misalign-
ment must be employed prior to PCA. The use of peak tables is a common approach 
for overcoming retention time shifting. These tables are typically generated by com-
mercial software, which attempts to identify and quantify the analytes present in 
each chromatogram before aligning the tables. However, this approach may not be 
successful for highly saturated chromatograms where multiple chemical species 
overlap. Therefore, the analyst may want to either apply an alignment algorithm to 
the data set or bin the data to overcome misalignment. Application of a retention 
time alignment algorithm to pixel-level data (i.e., every data point in the unfolded 
chromatograms) was shown to increase the DCS between different gasoline samples 
[36]. Binning the pixel-level data can also minimize chromatographic misalignment 
while increasing the S/N. Sudol et al. showed that a maximum DCS between two fuel 
classes on a scores plot occurs at an optimal level of binning [41]. However, when 
examining the fve adjacent fuel pairs in the study, each had a different optimum bin 
size due to the number of chemical differences between the fuels [41]. This result 
indicates that the analyst must select a bin size that balances the S/N improvement 
while minimizing misalignment and maintaining chemical selectivity. 

PCA is typically the frst chemometric technique applied to GC  ×  GC and 
LC × LC applications because of the data reduction and visualization provided. For 
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example, Alexandrino and Augusto performed PCA on a GC × GC-MS data set of 
crude oils extracted from lacustrine (L) and marine (M) environments to discover 
the respective geochemical fngerprints [80]. Prior to performing pixel-based PCA, 
the authors minimized retention time shifting through the use of an in-house piece-
wise peak alignment algorithm [80]. Visual inspection of the scores plot in Figure 
4.10A shows that PC 1, representing 39.15% of the total variance, separates the crude 
oil samples based upon their environmental source. The loadings for PC 1 at m/z 177 
and 191 in Figure 4.10B indicate that crude oil from lacustrine environments have 
higher concentrations of tri- and tetracyclic terpanes and αβ-hopanes (positive load-
ings) while oils from marine sources have higher concentrations of norneohopanes, 
homohopanes, and gammacerane (negative loadings). Likewise, the PC 1 loadings 
at m/z 217, 231, and 259 in Figure 4.10C also show that marine crude oils have an 
increased abundance of diasteranes, ααα-steranes, methyl steranes, and triaromatic 
steroids. Therefore, the sample clustering on PC 1 was due to the ratio of steranes to 
αβ-hopanes, a common diagnostic ratio for geochemical investigations [80]. 

4.4.2 hierarChiCal Cluster analysis (hCa) 

Along with PCA, HCA is also used to quantify and visualize the similarities and dif-
ferences between samples using either the unfolded chromatogram or tabulated peak 
areas. The similarity between samples is commonly calculated using an agglomera-
tive (i.e., bottom-up) approach, which starts with each sample as an individual cluster 
member and merges similar samples into clusters [81,82]. Note that a divisive (i.e., 
top-down) approach, where all observations start in one cluster and then are split into 
smaller clusters, can also be used [81,82]. HCA requires the analyst to defne both the 
distance metric and linkage algorithm. While a variety of distance metrics can be 
defned [82], either the Euclidean or Manhattan distance is used in practice to deter-
mine the similarity between samples. The Euclidean distance measures the straight-
line distance between points (root-mean-squared differences in the coordinates) 
while the Manhattan (city block) distance quantifes the distance in right angle steps 
between points (absolute value of differences in the coordinates). Various linkage 
algorithms, which defne the criteria used to group clusters together, have also been 
described in the literature [82]. However, the most popular algorithms are single-
link, complete-link, average-link, and Ward’s methods. The single-link algorithm 
fnds the minimum distance between two members belonging to different clusters, 
whereas the complete-link approach considers the maximum distance between two 
members belonging to different clusters. The average-link method groups clusters 
together based on the average distance between all member pairs in the two clusters, 
which results in a minimization of within-cluster variance. Ward’s method also pro-
duces this result by fnding the pair of clusters that minimizes the increase in total 
within-cluster variance after merging [83]. 

The resulting arrangement of the clusters for HCA can then be plotted on a den-
drogram. Figure 4.11 provides an example dendrogram after HCA was performed on 
quantifed volatile organic compounds discovered in the headspace of aging blood 
samples with GC × GC-TOFMS [84]. The right-most nodes on the dendrogram (i.e., 
the leaf nodes) represent each blood sample that was analyzed. Every other node on 
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FIGURE 4.10 PCA results of crude oil samples extracted from marine (M) and lacustrine (L) environments The data set was created 
by concatenating m/z 177 191, 217, 231, and 259 to target the following compound classes: terpanes, steranes, hopanes, and triaromatic 
steroids. (A) The scores plot for this data set shows that the marine and lacustrine samples are mainly separated on PC 1. (B) PC 1 load-
ings for m/z 177 and 191. Yellow regions represent compounds with high abundance in samples with positive scores while blue regions 
highlight peaks with high abundance in samples with negative scores. (C) PC 1 loadings for m/z 217, 231, and 259. 

This f gure was taken with permission from G.L. Alexandrino, F. Augusto, Comprehensive two-dimensional gas chromatography-mass spectrometry/ 
selected ion monitoring (GC × GC-MS/SIM) and chemometrics to enhance inter-reservoir geochemical features of crude oils, Energy & Fuels 32 (2018) 
8017–8023. https://doi.org/10.1021/acs.energyfuels.8b00230. 

https://doi.org/10.1021/acs.energyfuels.8b00230
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FIGURE 4.11 HCA performed on a GC × GC-TOFMS data set of volatile analytes present in blood at collection, after one day, and after one 
week. Samples, which are listed horizontally, are labeled according to the day of measurement (D), individual (P), and replicates (a–c). Volatiles 
discovered from supervised analysis are numbered and listed vertically in the heat map. 

This f gure was taken with permission from L.M. Dubois, K.A. Perrault, P.-H. Stefanuto, S. Koschinski, M. Edwards, L. McGregor, J.-F. Focant, Thermal desorp-
tion comprehensive two-dimensional gas chromatography coupled to variable-energy electron ionization time-of-f ight mass spectrometry for monitoring subtle 
changes in volatile organic compound prof les of human blood, J. Chromatogr. A 1501 (2017) 117–127. https://doi.org/10.1016/j.chroma.2017.04.026. 

https://doi.org/10.1016/j.chroma.2017.04.026
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the dendrogram represents an identifed cluster, where all samples connected to that 
node are members of that cluster. To determine the signifcant clusters in the data 
set, the dendrogram would be “cut” at the distance corresponding to the longest 
branches. For the dendrogram in Figure 4.11, the longest branches separate the three 
ages of blood analyzed (day 0, day 1, and 1 week). Interpretation of the dendrogram 
can also be enhanced with a heat map of the relative abundance of each analyte. For 
example, the heat map in Figure 4.11 shows that limonene (compound 1), camphene 
(compound 11), and α-pinene (compound 16) were cluster-discriminating analytes 
[84]. 

4.4.3 Partitional Clustering analysis 

In contrast to HCA, the partitional clustering algorithm simultaneously assigns all 
samples into k clusters, where k represents the number of specifed groups in the data 
set. These algorithms iteratively relocate the samples between clusters until the sum 
of squared distances is minimized. The most popular partitional clustering algorithm 
is k-means clustering, which defnes each cluster centroid as the mean of all samples 
assigned to that cluster [85]. The algorithm randomly assigns k cluster centroids 
and the distances between sample and cluster centroids are calculated. Either the 
Euclidean or Manhattan distance can be used for this calculation. During the cluster 
assignment and centroid update steps, the samples are grouped to their closest clus-
ter centroid and the algorithm determines the new cluster centroids. The algorithm 
then recalculates the sample-to-centroid distances and repeats the cluster assignment 
and centroid update steps. This method is repeated until cluster memberships do not 
change, or a maximum number of iterations is reached. Due to the random selection 
of centroids, the resulting cluster assignments are not reproducible between algo-
rithm runs. Therefore, the k-means algorithm is commonly performed multiple times 
with different initial centroids and the model with the smallest sum-of-squared dis-
tances is selected as the appropriate model [86]. Other variations of k-means cluster-
ing, which heuristically select the initial centroids or limit the cluster centroids to be 
a member of the cluster, have also been proposed to improve model reproducibility 
[86,87]. 

Appropriate selection of the number of clusters, k, to model is imperative to 
achieving useful cluster assignments. In practice, cluster assignments at differ-
ent values of k are compared using a clustering validity index [82,86]. Numerous 
index calculations have been described in the literature with the goal of quantify-
ing within-cluster compactness and between-cluster separation [82]. However, the 
silhouette index [88] and Davies-Bouldin index [89] are most commonly used. 
The silhouette index provides a measure of how similar a sample is to others in its 
own cluster relative to other samples in a neighboring cluster. The resulting metric 
is termed a silhouette value, which ranges from -1 (not well clustered) to 1 (well 
clustered). The appropriate number of clusters, k, can be determined by selecting 
the clustering solution that has an average silhouette value closest to 1. For exam-
ple, silhouette results revealed that GC × GC-TOFMS chromatograms of different 
mask materials clustered into three groups, corresponding to their relative abun-
dance of branched alkanes and olefns [90]. Similarly, the Davies-Bouldin index 



 
 
 
 
 

 

 
 

  
 
 
 

 
 

 

 

 

 
 

 

  

 
 
 
 

 
 
 
 

 

171 Comprehensive Two-Dimensional Chromatography 

measures the ratio of the within-cluster variance to between-cluster distances. 
The optimal clustering solution has the smallest Davies-Bouldin index value. 
Instead of using a clustering validity index, recent work by Cain et al. showed 
that the clustering solution with the smallest probability of occurring by chance is 
most likely to be due to underlying chemical differences in the chromatographic 
data set [91]. 

4.5 SUPERVISED, NON-TARGETED ANALYSIS 

While unsupervised approaches are appropriate for initial investigations into a 
chromatographic data set, supervised approaches are well suited for studying cause 
and effect experiments by leveraging a priori information. Supervised algorithms 
utilize target variables such as class labels or independently measured sample 
properties to discover features, build regression models, and/or classify samples. 
Feature discovery, also known as feature selection, fnds a subset of the original 
chromatographic data that is highly correlated with the target variable(s). For chro-
matographic data sets, Fisher ratio (F-ratio) analysis is typically used to discover 
class-distinguishing analytes. It is important to note that unsupervised methods 
like PCA and HCA are commonly used to visualize the results obtained from non-
targeted, supervised feature selection methods. Along with identifying signifcant 
analytes (feature selection), methods used for property prediction and sample clas-
sifcation fall under the umbrella of supervised analysis techniques. Note that in 
this context, property refers to either a chemical or physical quantity that was col-
lected separately from the chromatographic data set. The most common property 
prediction method is partial least squares (PLS) regression, which develops a mul-
tivariate calibration model to discover which analytes correlate with the sample 
property that is being modeled. The extension of this algorithm, known as partial 
least squares-discriminant analysis (PLS-DA), can be used for classifcation appli-
cations. This section will detail the principles and preprocessing considerations for 
each supervised technique. 

4.5.1 fisher ratio (f-ratio) analysis 

F-ratio analysis is a popular feature selection technique for chromatographic data 
because it inherently provides a degree of data reduction, focusing the overall 
data analysis before performing further targeted and non-targeted chemometric 
methods. This feature selection method utilizes the analysis of variance (ANOVA) 
statistical hypothesis test, which compares the variance of observations and dis-
covers signifcant differences between groups. The total variance, defned as the 
squared standard deviation, can be partitioned into two contributions: variance 
between classes of samples and within classes of samples. The between class (BC) 
variance, which describes how each class mean varies from the grand mean, is 
defned as 

2 1 2˜BC = ˆ( xi − x ) ni (4.4) 
k −1 
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where k is the number of classes, ni is the number of measurements in the ith 
class, xi̅  is the mean of the ith class, and x̅  is the grand mean. The within class (WC) 
variance, which indicates how much each measurement varies from its class mean, is 

1 22˜ WC = 
N k  ̂ˆ( xij − xi ) (4.5) 
− 

where N is the total number of measurements, and xij is the jth measurement of 
the ith class. Finally, the F-ratio is then obtained by taking the ratio of these two 
quantities: 

2˛BCF ratio− = 
2 (4.6) 

˛ WC 

The results from the F-ratio analysis are compiled in a “hit list,” which ranks the 
F-ratio values in descending order. The analyst then mines the hit list in a top-down 
approach, identifying and quantifying peaks with larger F-ratios, since a high F-ratio 
generally corresponds to class-distinguishing analytes. A class-distinguishing analyte 
is an analyte whose concentration is statistically different between classes, which is 
typically based upon a t-test having a p-value < 0.05 (95% confdence limit). Thus, 
the results of the t-test show that the concentration ratio between classes suffciently 
differs from one. These class-distinguishing analytes are commonly referred to as true 
positives. However, this data mining approach can be hindered by the presence of both 
false positives and negatives. A false positive refers to the discovery of an analyte that 
is not statistically different between classes, while a false negative is the inability to 
discover a class-distinguishing analyte. The presence of false positives and/or nega-
tives can be present in all implementations of F-ratio analysis (peak table, pixel-based, 
and tile-based). Therefore, along with discussing the different approaches for F-ratio 
analysis, strategies to reduce the false discovery rate will be introduced in this section. 

Peak table-based [92–94] and pixel-based [95–98] are the most straightforward 
approaches for F-ratio analysis. A peak table-based approach typically uses the 
instrumental software to baseline correct and quantify signals for each peak in the 
chromatograms. These peak tables are then aligned based upon user-defned time 
windows and mass spectrum match criteria prior to F-ratio analysis [92]. While this 
approach aids in limiting the pool of potential features to only those with measur-
able signals, it is important to note that this approach is limited by the capability of 
the peak fnding software and thus, potentially class-distinguishing analytes with 
low S/N can be missed. A pixel-based approach, on the other hand, calculates an 
F-ratio for every data point in the chromatogram (i.e., at every 2D retention time on 
every detector channel). The advantage of a pixel-based approach is that it utilizes 
the entire data set; however, the number of false positives can increase rapidly if a 
retention time alignment algorithm is not applied. Even if misalignment is mitigated, 
random detector fuctuations can artifcially infate F-ratios and increase the number 
of false positives [99]. 

To address this challenge, a new tile-based approach for F-ratio analysis of com-
prehensive 2D chromatographic data was developed for GC  ×  GC-TOFMS data 
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[99,100]. Here, the chromatogram is divided into regular repeating rectangular sec-
tions called “tiles,” where the encapsulated signal is summed (binned) to a single 
value. This tiling procedure not only reduces the overall size of the chromatogram 
but also reduces the effect of retention time shifting. To ensure that peaks are not 
split between tiles, F-ratio analysis is performed using four different tiling grids, 
where each grid is offset from the original tile grid by half a tile width in either 
dimension. A four-grid tile scheme ensures that each peak in the chromatogram is 
adequately captured by at least one tile. The resulting tiled data sets are then com-
pared using F-ratio analysis on a per-m/z basis. Next, a pin approximating the loca-
tion of the peak for each hit is calculated using the maximum signal difference for 
each tile, and pins with similar retention times are clustered together. This pinning 
and clustering step ensures that each feature in the hit list is only represented by one 
pin with the highest F-ratio. 

Proper reduction of false positives/negatives using tile-based F-ratio analysis frst 
requires optimization of the tile size for both dimensions, 1D and 2D. Ideally, the 
tile dimensions should encompass the average peak width along with any misalign-
ment [99,100]. If the tile size is too large, then interferent signals could mask the 
signal of true positives at low concentrations [101]. Conversely, the hit list generated 
after using a tile smaller than optimal can result in numerous redundant hits, which 
may be interpreted as false positives [101]. Other strategies to reduce the presence 
of false positives require optimization of different parameters involved in calculat-
ing F-ratios and ranking the discovered features. Reaser et al. demonstrated that 
the occurrence of false positives can be mitigated by using a S/N of 10 and rank-
ing F-ratios based on the average of the top 10 m/z [102]. Likewise, Sudol et al. 
showed that in part by ranking the hit list using only the m/z that produced the top 
F-ratio for a given hit allowed for the discovery of features at concentrations as low 
as 1 ppm [101]. For data sets consisting of control and treatment classes, F-ratios 
can be calculated using solely the variance of the control class in the denominator 
[103]. This calculation, termed control-normalized F-ratio, was shown to discover 
class-distinguishing features that were initially missed by traditional F-ratio analysis 
due to their non-uniform/high variance in the treatment class [103]. An analyst can 
evaluate the effectiveness of changing these different parameters on the true and 
false positive rates with receiving operator characteristic (ROC) curves [102]. The 
area under the curve (AUC) for the ROC curve can then quantify the optimization of 
different parameters, where higher AUCs indicate more true positives appear at the 
top of the hit list [102]. 

Along with optimizing the calculation and ranking parameters, a reduction of 
the hit list can be achieved by selecting an F-ratio threshold, deeming any feature 
above the threshold to be important for further analysis. Traditionally, a manual 
cutoff can be selected by determining the point where the frequency of false posi-
tives increases. However, this method is both time-consuming and subjective toward 
the false positive tolerance limit defned by the analyst. An F-critical threshold 
can also be applied, but this approach generally picks small cutoffs that keep too 
many false positives. Null distribution analysis has been demonstrated to be a more 
robust method for cutoff determination [100]. This method develops false positive 
F-distributions from repeated F-ratio analyses on classes built from redistributing 
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samples evenly and randomly into classes. A distribution of F-ratios from the null 
comparisons is developed at a desired null probability. The F-ratio threshold is then 
chosen by identifying the F-ratio that corresponds to a user-defned confdence level. 
Ultimately, null distribution analysis allows for the objective determination of an 
F-ratio threshold, which is unique and accurate because it naturally considers the 
underlying noise for a given data set. 

Figure 4.12 illustrates the operation of tile-based F-ratio analysis for the compari-
son of yeast cell extracts grown under different conditions [104]. Using cystathionine 
as a representative peak in the chromatogram, the chosen tile size was 6s (four modu-
lations) on 1D and 300 ms on 2D (Figure 4.12A). This tile size was deemed optimal 
because it not only encompassed signal from the entire peak on both dimensions, but 
it also compensated for the retention time shifting seen in 1D and 2D (Figure 4.12B-
C). Using the optimal tile size, approximately 1700 potential features were discov-
ered via F-ratio analysis [104]. Since mining this hit list would be labor-intensive, 
null distribution analysis was utilized to determine the F-ratio threshold. Since this 
comparison contains six samples in each class, there are 200 null permutations of 
class membership for analysis [104]. A null F-ratio distribution can be developed by 
plotting the F-ratio values from those 200 permutations at a null probability of 0.1% 
(Figure 4.12D; blue). This null probability was chosen because it corresponds to a 
false discovery rate (FDR) of 1 out of 1000 features. From this null F-distribution, an 
F-ratio threshold of 15 was determined, because this value provides 95% certainty 
that a 1 in 1000 FDR will be achieved when truncating the true class compari-
son. Application of this threshold to the F-distribution of the true class comparison 
(Figure 4.12D; black) resulted in the discovery of 94 features, nearly a 20-fold reduc-
tion in the original hit list. The 94 discovered features are represented by circles on 
the GC × GC-TOFMS chromatogram (Figure 4.12E). The discovered features were 
then processed using PARAFAC to obtain pure compound profles and spectra [104]. 
Overall, this example illustrates how tile-based F-ratio analysis coupled with null 
distribution analysis can be effectively used as a data reduction tool for supervised, 
non-targeted analysis. 

4.5.2 Partial least squares (Pls) regression 

Partial least squares (PLS) is a multivariate regression method that correlates the infor-
mation in a data matrix (X) to information in another matrix (Y), which may be a 
single column vector (i.e., PLS1), or a multi-column matrix (i.e., multiway PLS; n-PLS) 
[105]. PLS is often used to predict some property in Y that is diffcult or expensive 
to obtain by the reference method, using chromatographic data (X). In essence, PLS 
analysis is based on performing PCA individually on X and Y. In PCA, the direc-
tion of the loadings in X and Y maximizes the variance within each of the respective 
matrices. However, in PLS, the direction of loadings of X and Y is chosen to maximize 
the covariance between these two matrices. Analogous to PCs, the variation in the 
X-block is described by a series of orthogonal linear latent variables (LVs). A visual 
illustration of PLS model generation and optimization on unfolded comprehensive 2D 
chromatograms is provided in Figure 4.13. Note that PLS can be a computationally 
expensive technique and thus is seldom performed on pixel-level comprehensive 2D 
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FIGURE 4.12 Results from tile-based F-ratio analysis on a GC × GC-TOFMS data set of yeast samples grown under derepressed (DR) and 
repressed (R) conditions. (A) Zoom-in on cystathionine at m/z 278 to illustrate the selection of the tile size for F-ratio analysis. (B) The 1D peak 
prof le for cystathionine in (A), where the black dashed lines represent the 1D tile size. (C) The 2D peak prof le for cystathionine in (A), where the 
black dashed lines represent the 2D tile size. (D) Resulting F-ratio distribution for the true class comparison (black) and 0.1% null F-distribution 
(blue). Both the F-critical threshold and threshold from null distribution analysis are labeled. (E) Total ion current chromatogram for DR class with 
analytes discovered by F-ratio analysis circled. The size of the circles corresponds to the calculated F-ratio for the peak. 

This f gure was taken with permission from N.E. Watson, B.A. Parsons, R.E. Synovec, Performance evaluation of tile-based Fisher Ratio analysis using a bench-
mark yeast metabolome dataset, J. Chromatogr. A 1459 (2016) 101–111. https://doi.org/10.1016/j.chroma.2016.06.067. 

https://doi.org/10.1016/j.chroma.2016.06.067
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FIGURE 4.13 Schematic illustrating PLS regression analysis for comprehensive 2D sepa-
rations. The X-block contains the chromatograms in their vectorized form, and the Y-block 
contains the corresponding property measurements. Following PLS, a regression model and 
loadings (or linear regression vectors; LVRs). The regression model is a plot of the predicted 
versus measured property values. The LVRs highlight the features that are both positively 
(blue) and negatively correlated (red) to the given property. Cross-validation is performed to 
determine the number of latent variables retained in the PLS model. Furthermore, a plot of 
the Q residuals versus Hotelling T2 can be used for outlier detection. 
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chromatographic data. Therefore, data reduction techniques such as removing uninfor-
mative chromatographic regions or m/z values, binning [106,107], and feature selection 
(e.g., F-ratio analysis) [108] can be used before constructing the X-block. 

The number of LVs to include is an important step in the development of a PLS 
model. This is generally determined via leave-one-out-cross-validation (LOOCV), 
wherein one row of X (e.g., an unfolded chromatogram) is excluded from the model, 
and the model is rebuilt. After repeating this for every row of X, the root-mean-
square error of cross-validation (RMESCV) is computed, which measures the dif-
ference in the cross-validation predicted value of the samples and their measured 
values from Y. Then, the number of LVs to include is selected from the model with 
the lowest RMESCV, or after the change in RMESCV upon adding additional LVs 
becomes negligible (Figure 4.13). However, LOOCV is computationally expensive 
for large data sets and can result in model overftting. Hence, the cross-validation 
method may employ one or more sub-validation experiments in which a subset of 
samples, rather than a single sample, is removed from the X-block to generate a 
validation set. Examples of sub-validation methods include Venetian blinds, contigu-
ous blocks, and random subsets [109]. These sub-validation methods differ in how 
the samples to remove from X are selected. The proper selection of a sub-validation 
model(s) depends on the nature of the data set and the analysis goals. 

The primary outcome of a PLS model is a regression plot showing the correla-
tion of the predicted property to the measured property (Figure 4.13). For n-PLS, a 
regression plot is generated for each column of Y. Ideally, the regression plots should 
have a correlation coeffcient close to 1, demonstrating that the property (or proper-
ties) of interest is (are) being accurately represented by the chromatographic data. 
Furthermore, interpretation of the linear regression vectors (LRV) can specify which 
variables of X are positively correlated, negatively correlated, or non-correlated to Y. 
Each LRV can be refolded to produce a plot that visually appears like a comprehen-
sive 2D chromatogram (Figure 4.13). Positive variables in the LRV will correspond to 
chromatographic variables that are positively correlated with the predicted variables, 
whereas anticorrelated variables will be negative. Regions of little or no intensity 
in the LRVs correspond to chromatographic variables that do not correlate with the 
predicted property. Outliers in the model can also be detected by examining a plot of 
the Q residuals versus Hotelling’s T2 statistic (Figure 4.13). The Q residuals are a mea-
sure of the difference between the original and modeled data while the Hotelling’s 
T2 statistic calculates the variation of each sample within the model [110]. Therefore, 
samples with a high Q residual or Hotelling’s T2 could be considered possible outliers 
because the samples deviated greatly from the predictions made by the model. 

Berrier et al. demonstrated the benefts of PLS regression for the creation of mod-
els that can predict a variety of performance properties (e.g., density, kinematic vis-
cosity, and net heat of combustion) for aerospace kerosene fuels [107]. Figure 4.14A 
shows the TIC chromatogram for a representative fuel that was collected on a 
GC × GC-TOFMS instrument with a reversed-column format (polar 1D column and 
non-polar 2D column). From this TIC chromatogram, three chemical classes can be 
seen: alkanes (purple), cycloalkanes (orange), and aromatics (green). Figure 4.14B 
shows the PLS regression plot of viscosity for the fuel data set after the chromato-
grams were binned. This regression plot shows that the samples are closely clustered 
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FIGURE 4.14 PLS regression analysis performed on a GC × GC-TOFMS data set of ker-
osene-based rocket fuels. (A) TIC chromatogram of a representative fuel sample with com-
pound classes primarily separated on the 2D. The compounds outlined in purple are alkanes, 
orange are cycloalkanes, and green are aromatics. Prior to analysis, each sample chromato-
gram was binned to improve computational speed. (B) PLS regression model of viscosity 
with the number of latent variables (LVs) and prediction errors provided. (C) The LVR for the 
PLS model shown in (B) with the locations of the three compound classes overlaid: alkanes 
(dotted line), cycloalkanes (dashed line), and aromatics (solid line). Blue regions indicate bins 
with positive values for the LVR while red regions indicate bins with negative values. 

This fgure was taken with permission from K.L. Berrier, C.E. Freye, M.C. Billingsley, R.E. Synovec, 
Predictive modeling of aerospace fuel properties using comprehensive two-dimensional gas chromatog-
raphy with time-of-fight mass spectrometry and partial least squares analysis, Energy & Fuels 34 (2020) 
4084–4094. https://doi.org/10.1021/acs.energyfuels.9b04108. 

around the 1:1 line and the model has a low normalized RMSECV, indicating that the 
model utilizing the chemical composition data accurately characterizes the experi-
mental property data. Furthermore, the LVR (Figure 4.14C) shows that analytes with 
higher boiling points (e.g., long-chain alkanes and cycloalkanes) positively correlate 
with increasing viscosity while analytes with lower boiling points (e.g., short-chain 
alkanes and small aromatics) correlate with lower viscosities. Thus, PLS models can 
not only be used for property prediction of new samples but can also discover ana-
lytes (or compound classes) in the separation that relate to those properties. 

4.5.3 Partial least squares-DisCriminant analysis (Pls-Da) 

PLS-DA is a non-targeted classifcation and feature discovery method that is analo-
gous to a supervised version of PCA but is mathematically similar to PLS. Given 
the similarity between PLS and PLS-DA, the reader is instructed to refer to the 
earlier PLS section and the following references for an in-depth description of its 
mathematical operation [110–112]. However, it is important to note that the Y-block 
for PLS-DA is not composed of continuous variables, as in PLS. Instead, PLS-DA 
regresses the chromatographic data in the X-block against categorical variables 
denoting class membership (e.g., 0 and 1 for a two-class model) in the Y-block. 
Furthermore, like PLS and PCA, the X-block in PLS-DA seldom contains pixel-
level chromatograms because of the computational burden and undesirable effects 
of retention time shifting. If the data is well-aligned, one m/z may be used for 

https://doi.org/10.1021/acs.energyfuels.9b04108
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model development or multiple PLS-DA models may be built for different m/z [113]. 
Alternatively, PLS-DA can be performed on peak tables [33,114] or chromatograms 
after applying data reduction techniques (i.e., binning or feature selection) [115] to 
mitigate the effects of misalignment and reduce computational expense. Analogous 
to a PCA scores plot, the main output from PLS-DA is a scores plot that plots the 
scores on LV 2 versus LV 1 to visualize the similarities/differences between samples. 

It is important to note that model overftting is common for data sets that contain 
many more variables than samples, which is often the case when using comprehen-
sive 2D separations. In these instances, variables that do not correspond to mean-
ingful chemical difference may be excellent sample classifers solely due to random 
chance [116]. Therefore, the PLS-DA scores plot may suggest an excellent classif-
cation model even though the underlying data does not support the same conclu-
sion. Several validation and optimization methods can be employed to prevent model 
overftting. Prior to model development, the data set can be split between a training 
set and external validation set. The training set is used to generate the PLS-DA 
model, and the prediction success of the PLS-DA model is verifed with the external 
validation set [117]. For a defnitive approach, the analyst may permute the Y-block, 
such that the label attached to each sample is randomized [118]. Following many 
permutations, the results of the permuted data set are compared to the results of 
the model with true class labels. Furthermore, ROC curves are frequently employed 
as an additional validation step to assess the probability of correctly classifying a 
sample across a range of classifcation thresholds [118,119]. 

In addition to classifcation, PLS-DA can be used to perform feature selection. 
If true chemical variance is driving class membership, then chromatographic vari-
ables of high intensity in the loadings matrix may correspond to peaks in the origi-
nal GC × GC or LC × LC data that are class-distinguishing analytes. To verify 
that these highly loaded peaks correspond to meaningful chemical differences, the 
concentration change should be independently tested for statistical signifcance 
(i.e., a t-test or one-way ANOVA at the desired confdence interval). Furthermore, 
several statistical metrics can be used to perform feature selection using the 
PLS-DA outputs, such as the selectivity ratio (SR) and variable importance in pro-
jection (VIP). The SR, measured as the ratio of explained to residual variance, can 
be used to rank the impact of each chromatographic variable in descending order 
[120]. Similarly, VIP scores quantify the infuence of every individual chromato-
graphic variance on the overall PLS-DA model using its loadings weight [121]. As 
a simple rule of thumb, variables with VIP scores greater than one are retained 
as potential class-distinguishing features [121]. For example, Navarro-Reig et al. 
collected LC × LC-QTOF-MS chromatograms (Figure 4.15A) of rice samples to 
study the effects of watering on rice metabolism [33]. Due to the complexity of the 
data set, each chromatogram underwent both ROI and wavelet compression prior 
to identifying and quantifying analytes with MCR-ALS [33]. A PLS-DA model 
for these analytes shows a clear separation between the non-watered (orange) and 
watered (blue) rice samples (Figure 4.15B). The VIP scores in Figure 4.15C dem-
onstrate that favonoids and glycosides are responsible for this differentiation in the 
PLS-DA model, since these were found in higher abundance for the non-watered 
rice samples [33]. 
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 FIGURE 4.15 PLS-DA performed on a LC × LC-QTOF-MS data set investigating the rice metabolism under different watering strategies. (A) 
Chromatogram collected for a representative rice sample. Given the size of the data, the chromatogram was split into three different time regions 
(highlighted in orange, red, and blue) and the data was compressed using the regions of interest approach. (B) PLS-DA scores plot of non-watered 
(orange) and watered (blue) samples using the peak areas obtained from MCR-ALS analysis of the compressed chromatogram in (A). (C) A plot 
of the variable importance in projection (VIP) scores measured for each metabolite quantif ed in the chromatograms (i.e., the chromatographic 
variable). Each metabolite is colored according to its compound class, and metabolites responsible for the sample separation on the PLS-DA scores 
plot (i.e., have a high VIP value) are labeled. 

The f gure was taken with permission from M. Navarro-Reig, J. Jaumot, A. Baglai, G. Vivó-Truyols, P.J. Schoenmakers, R. Tauler, Untargeted comprehensive two-
dimensional liquid chromatography coupled with high-resolution mass spectrometry analysis of rice metabolome using multivariate curve resolution, Anal. Chem. 
89 (2017) 7675–7683. https://doi.org/10.1021/acs.analchem.7b01648. 

https://doi.org/10.1021/acs.analchem.7b01648
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FIGURE 4.16 PARAFAC decomposition of cyclohexyl benzene (CHB—red peak prof le) in diesel separated using GC3-TOFMS. (A) Isosurface 
plot of m/z 57 (yellow), 81 (black), 104 (red), 118 (blue), 131 (green), and 132 (magenta) to show the analytes overlapped with CHB (red retention 
ellipse). (B) PARAFAC resolved 1D chromatographic prof les. The peak for CHB is shown in red while all other peaks are shown in black. (C) 
PARAFAC resolved 2D chromatographic prof les. (D) PARAFAC resolved 3D chromatographic prof les. (E) PARAFAC resolved mass spectrum 
for CHB. The match value (MV) to a library spectrum is also provided. 

This f gure was taken with permission from N.E. Watson, S.E. Prebihalo, R.E. Synovec, Targeted analyte deconvolution and identif cation by four-way parallel factor 
analysis using three-dimensional gas chromatography with mass spectrometry data, Anal. Chim. Acta 983 (2017) 67–75. https://doi.org/10.1016/j.aca.2017.06.017. 

https://doi.org/10.1016/j.aca.2017.06.017
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4.6 FUTURE PROSPECTUS 

Comprehensive 2D chromatography has been proven to be advantageous in a wide 
variety of applications due to its increased resolving power and commercialization. 
However, the large fle sizes produced from these instruments compel the need for 
chemometric analysis to maximize the amount of extracted chemical information in 
a timely and accurate manner. Hence, chemometric analysis is becoming a mainstay 
in advanced data handling for comprehensive 2D separations. Therefore, knowledge 
of common chemometric algorithms (i.e., their purpose, operation, and limitations) 
employed in the literature and incorporated into commercial or open-source soft-
ware is necessary. This chapter has covered the fundamentals for targeted decompo-
sition methods (MCR-ALS and PARAFAC) along with unsupervised (PCA, HCA, 
and k-means clustering) and supervised (F-ratio, PLS regression, and PLS-DA) non-
targeted methods. This chapter has also covered the pertinent instrumental consid-
erations and preprocessing methods required to produce high-quality data for these 
chemometric analyses. 

The use of comprehensive 2D separations will certainly continue to evolve and 
fnd new applications. As stated in the introduction, the use of comprehensive 2D 
separations is growing, and researchers are becoming interested in analyzing these 
large and very information-rich data sets. Along with the size of these data sets, 
more complex analytical questions are being proposed. Automated workfows 
and machine learning algorithms are expected to continue to push the boundar-
ies of chromatographic data analysis with minimal human intervention [122,123]. 
Furthermore, current research has focused on the development and implementation 
of three-dimensional (3D) separations [124–128], which has created new opportuni-
ties to test and improve chemometric methods [129–131]. For example, Watson et al. 
used both comprehensive 3D gas chromatography with TOFMS (GC3-TOFMS) and 
PARAFAC to resolve and quantify both native and non-native compounds in diesel 
fuel [130]. Figure 4.16A provides an example of a non-native analyte, cyclohexyl ben-
zene (red retention ellipse), which co-eluted with several native diesel compounds. 
PARAFAC decomposition of this four-way data set successfully resolved cyclohexyl 
benzene (red peak profle) into its pure 1D (Figure 4.16B), 2D (Figure 4.16C), 3D 
(Figure 4.16D), and mass spectrum (Figure 4.16E). Therefore, higher dimensional 
instruments will allow analysts not only to beneft from the increase in peak capac-
ity and selectivity, but also to access higher-order chemometric methods. As this 
chapter has shown, the use of comprehensive 2D separations and chemometrics will 
continue to fourish for years to come. 
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methods, overview of, 148, 149 
performance, 154 

chromatogram, 75, 94, 146–147, 155 
concentration/abundance in, 59 
direct comparison of, 65 
of evaporated gasoline, 47–48 
evaporation time from, 49 
of experimentally evaporated liquids, 75 
for identifcation, 75, 76–77, 94 
of Liquid C, 79, 79, 80 
of Liquid D, 80, 81 
predicted, 47 
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of reference liquids, 65 
retention index in, 50 
of unevaporated gasoline, 47–48 

chromatographics 
data analysis, chemometric methods for, 148 
elution, 17 
platforms, 146 

CHYM, see chymotrypsinogen (CHYM) 
chymotrypsinogen (CHYM), 25 
class-distinguishing analytes, 172 
class memberships, 165 
cluster centroids, 170 
cluster-discriminating analytes, 170 
cluster formation, 5–7 
clustering validity index, 170–171 
CODESSA-PRO program, 125 
co-eluting compounds, 147 
column dynamics, 9–10 
column separations, 152 
commercialization, 151 
complexation 

effciency, 108 
process, 109 

complex samples, separation of, 146 
compound distribution, prediction of 

diesel fuel, 56–59, 57, 58 
kerosene and marine fuel stabilizer, 59–61, 60 

comprehensive regression model, 42 
comprehensive variable-temperature model, 51 
concentration-dependent signals, 151 
confdence ellipses, 166 
conventional data analysis, 147 
co-solvents, 108 
cross-validation method, 122, 176, 177 
“crowding” effect, 5 
crystalline products, 102 
cyclic alkanes, 42, 54, 80–81 
cycloalkanes, 178 
cyclodextrin (CD) 

analyte’s structure, 101 
branched, 104 
cavity, 126 
complexation ability of, 109 
derivatives, 103 
determination of stoichiometry, 115–116, 117 
edges of, 104 
equilibrium, 108 
fexibility, 106 
guest molecule, incorporation of, 110 
hydrolysis and oxidation, 106 
inclusion complexes, 101, 104, 107– 116, 117 
large ring, 104 
in pharmaceutical formulations, 108 
pseudo-stationary phase, 109 
risperidone forms with, 113 
selective interactions of, 109 
small native, 104–105 

small natural, 103 
solubility of, 104, 106 
stoichiometry of, 107 
structure and properties, 101, 102–107, 105 
susceptibility of, 107 
thermodynamic parameters of, 114–115 
types of, 113 

D 

DAD, see diode array detector (DAD) 
data bilinearity, 155 
data preprocessing, 153–154 
data reduction techniques, 177 
Davies-Bouldin index, 170–171 
debris samples, identifcation of liquids in, 65 
degree-of-class separation (DCS) metric, 166 
detector response, 46 
dextrins, cyclic structure of, 102 
diesel fuels, 50–52, 50–53, 53 

chromatograms of, 58, 58 
evaporation of, 59 
experimental and predicted chromatograms 

of, 50, 50, 57–58 
individual compounds in, 59 
predicted chromatograms of, 57 
representative chromatograms of, 50 
short-term evaporation of, 55 
thin flms of, 38 
total fraction remaining of, 49 

diode array detector (DAD), 153 
dipole-dipole interactions, 108, 128 
docking methods, 122–123 

E 

EIPs, see extracted ion profles (EIPs) 
electrospray ionization (ESI), 153 
electrostatic interactions, 126 
elution behavior 

adsorption equilibrium, 15–21 
under linear isotherm conditions, 10–13, 10 
under non-linear isotherm conditions, 13–21 

environmental applications, evaporation, 49 
compound distribution, prediction of, 

59–61, 60 
diesel fuel, 56–59, 57, 58 
evaporation time, prediction of, 61–62, 62 
time to specifc fraction remaining, prediction 

of, 62–64, 63 
total fraction remaining, prediction of, 49–54, 

50–52, 53, 54–55, 55–56, 56 
environmental modeling 

applications for, 64 
primary goal of, 49 

environmental spill/discharge, 53, 64 
enzymatic modifcations, 103 
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ESI, see electrospray ionization (ESI) 
ether-like oxygen atoms, 104 
ethylbenzene, 72 
Euclidean distance, 167, 170 
evaporation, kinetic model of, 54; see 

environmental applications, evaporation; 
forensic applications 

in chromatogram, 47 
description of, 33–37 
fxed-temperature models, 43 
individual compounds after, 48, 57 
liquid phase vs., 38–39 
rate constant for, 40–48, 41, 42–43, 45, 

47–48 
theory, 37–40, 39–40 
time, function of, 38 

experimental fraction remaining, 54 
experimental parameters, selection of, 120–121 
explosives, characterization of, 64 
external validation, 122 
extracted ion profles (EIPs), 65, 82, 82, 90–91 

accuracy in predicting, 84 
alkane, 83, 91 
aromatic, 88, 88, 93 
for gasoline, 91 
identifcation of liquid, 87–88, 88, 91–93 
predicted and experimental, 83, 83 
reference collections, 82, 84, 93 
volatile compounds, 88 

F 

false discovery rate (FDR), 174 
fast mass-to-charge, 152 
F-critical threshold, 173 
FDR, see false discovery rate (FDR) 
FID, see fame ionization detection (FID) 
Fingas, empirical models of, 55, 56 
fre debris, 64, 87 
frst-line enantiomers, 103 
Fisher ratio (F-ratio) analysis, 171–174, 175 
fxed-temperature models, 41, 41–46, 42–43, 

55–57, 59, 63 
fame ionization detection (FID), 152 
fow modulation, 151 
fow modulators, 151 
forensic applications 

evaporation, kinetic model of, 64–66 
gasoline, identifcation of, 66–67, 66–72, 71, 

68 
liquids from different chemical classes, 

identifcation of, 72–73, 72–81, 74, 76–79, 
77, 81 

liquids in fre debris samples, identifcation 
of, 81–94 

forensic fre debris analysis, 94 
four-grid tile scheme, 173 

fraction-remaining curves, 45–48, 47–48, 50, 51, 
56, 59 

F-ratio analysis 
of comprehensive 2D chromatographic data, 

172–173 
false positives/negatives, 173 
implementations of, 172 
straightforward approaches for, 172 
tile-based, 174, 175 

F-ratio thresholds, objective determination of, 
174 

fruit tree spray, 86–87, 93 

G 

gas chromatography (GC), 103, 145–146 
gasoline 

compounds in, 80 
different-source comparisons of, 86 
evaluation, 66–67, 66–69, 68 
predicted reference collection, 69–72, 71 
predicting evaporation of, 68 
presence of, 87 
reference collection of, 71 
representative chromatograms of, 66–67 

Gaussian-shaped distribution, 75, 77 
GC × GC instrumentation, 151–152 

development and commercialization, 151 
modulators for, 151 
schematic of, 148 

GC-MS abundance, 46 
geochemical investigations, 167 
Gibbs free energy, 9, 114 
glucopyranosyl units, 103 
glucose ring oxidation, 107 
green chromatographic methods, development 

of, 127 
green liquid chromatography method, 103 
Grid-INdependent Descriptors (GRIND), 125 
group-type separations, 146–147 

H 

HCA, see hierarchical cluster analysis (HCA) 
Henry constant, 8 

hypothetical salt and temperature 
dependences of, 12, 12–13 

temperature dependence of, 9 
variations of, 10–11, 11, 12 

heterogeneity of temperature distribution, 25 
HIC, see hydrophobic interaction 

chromatography (HIC) 
hierarchical cluster analysis (HCA), 165, 167–170, 

168–170 
clusters for, 167 
dendrogram, 167, 170 
distance metric and linkage algorithm, 167 
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GC × GC-TOFMS data set, 169 
higher-order data, 151 
high-performance liquid chromatography 

(HPLC), 100, 111, 133 
approach, 113 
complex stability constants, 133, 134–135 
reversed-phase mode (RP-HPLC), 100 
stability constants, 134 
stationary phase, 127 

hindering quantitation efforts, 157 
HPLC, see high-performance liquid 

chromatography (HPLC) 
humidity, condensation of, 25 
hydrogen bonding, 126 
hydrolysis, rate of, 106 
hydrophobic cavity, 104 
hydrophobic effect, components of, 128 
hydrophobic interaction chromatography 

(HIC), 1–3 
advantage of, 2 
band deformation in thermally heterogeneous 

columns, 24–25 
binding capacity of proteins on, 21 
column dynamics, 9–10 
elution behavior, 10–21, 10, 13–14 
hydrophobic, 3 
media, 16 
mobile phase in, 21 
protein behavior in adsorbed phase, 3–9 
radial temperature distribution in, 25 
separation, 3 
solubility limitations, 21–24 
thermodynamic nature of, 2 

hydrophobic interactions, 2, 126 
hydrophobicity, 2 
hydroxyl groups, 109 
hypsochromic shift, 111 

ignitable liquids, 64, 82, 82 
reference collections of, 65 
residues, 65, 84 

inclusion complexes, 101, 104, 110–112, 116 
determination of K, 112–114 
formation, 123 
inclusion complexes formed between CD and 

guest molecules, 107–109 
instability of, 128 
modifed RP-HPLC systems, 109–110 
stability of, 113 
stoichiometry of, 115–116, 117 
thermodynamic parameters in a-CD-Modifed 

RP-HPLC, 114–115 
in-column precipitation, risk of, 22–23 
independent validation, 122 
individual compounds, predicting evaporation 

of, 65 

in silico approach, 127 
instrumentation, 149–151, 150 

and data preprocessing, 153–154 
GC × GC, 151–152 
LC × LC, 152–153 

ion-exchange chromatography, 2 
ionization-based detectors, 152 
isothermal titration calorimetry (ITC), 111 

J 

jet-cooled cryogen modulator, 151 

K 

K, determination of, 112–114 
kerosene, 58, 58 

experimental chromatograms of, 54 
experimental fraction remaining, 54 
fuel stabilizer, 53–54, 54–55 
predicted chromatograms of, 60 
total fraction remaining for, 53 

key set factor analysis (KSFA), 157 
kinetic models, 55–56, 63 

advantage of, 75 
application of, 81–82 
to predict extracted ion profles, 83, 83–84 
predictive accuracy of, 83 
utility of, 62 

k-means clustering, 165, 170 
kosmotropic salt, 3 

L 

lack-of-ft (LOF), 163 
lacquer thinner, 74, 80 
lacustrine environments, 167 
Lamarckian genetic algorithm, 123 
Langmuir competitive isotherm, 8 
Langmuir-type isotherms, 17 
Langmuir-type reaction kinetics, 5 
large-ring cyclodextrins (LR-CD), 102, 104 
latent variables (LVs), 174, 177, 178 
LC × LC-DAD chromatograms, 163 
LC × LC instrumentation, 152–153 
LC × LC-QTOF-MS chromatograms, 179 
LC × LC separations, active modulation 

techniques for, 152 
leave-one-out-cross-validation (LOOCV), 177 
lethal concentration (LC50), 63 
lethal dose (LD50), 63 
linear isotherm conditions, elution behavior under 

structurally stable proteins, 10 
structurally unstable proteins, 10–13 

linear regression vectors (LRV), 176, 177 
linear solvation energy relationships (LSER) 

theory, 118, 123 
liquid (LC) chromatography, 145–146 
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London dispersion forces, 108 
LOOCV, see leave-one-out-cross-validation 

(LOOCV) 
low-frequency detector noise, 153 
LR-CD, see large-ring cyclodextrins (LR-CD) 
LRV, see linear regression vectors (LRV) 
LVs, see latent variables (LVs) 
LYS, 15 

adsorption of, 19, 21 
band profles of, 13 
in binary mixture, 13 
concentrations of, 18, 23 
isotherms for, 18 
mixtures of, 14–15 
molar concentrations of, 19 
solid-liquid equilibrium (SLE) diagram of, 22 

M 

mAb2, isotherms for, 18 
machine learning algorithms (MLA), 121 
machine learning models, 126 
Mahalanobis distance, 166 
Manhattan distance, 167, 170 
MAPE, see mean absolute percent error (MAPE) 
marine fuel stabilizer, 53–54, 54–55, 58, 58 

experimental chromatograms of, 55 
predicted chromatograms of, 60 
total fraction remaining for, 53 

matrices, elements of, 161 
McGowan algorithm, 118 
Mcilroy models, 44–45, 47, 47–48, 68, 68, 69, 83 
MCR-ALS, see multivariate curve resolution-

alternating least squares (MCR-ALS) 
mean absolute percent error (MAPE), 42, 44, 

45, 65 
melting temperature 

detection of, 4 
of protein, 3, 4 

methanol, 114 
methylnaphthalenes, 68 
mixed modeling, 119 
MLA, see machine learning algorithms (MLA) 
MLR, see multiple linear regression (MLR) 
mobile phases in dimensions, 152 
model development, 75 
model overftting, 177 
model validation, approaches to, 122 
molecular descriptors, 121, 127 

and association constants, 127–128 
defnitions of, 119 
investigation and utilization of, 120 
on retention factor, 132 
role of, 123 
selection, 119–120 

molecular docking, 122 
Monte Carlo simulation method, 126 
multicomponent adsorption, 13 

multicomponent mixtures, separation of, 146 
multimodal chromatography, 2 
multiple chromatograms, 156, 165 
multiple linear regression (MLR), 121 
multivariate curve resolution-alternating least 

squares (MCR-ALS), 149, 155–159, 156, 
158, 160 

decomposition methods, 157, 158, 160 
decomposition model, 157 
two-component, 156 

multivariate detection, 155 
multivariate detector records, 148 
myoglobin (MB), ternary protein mixture of, 24, 

24 

N 

n-alkanes, 40, 54, 58, 58, 59, 60 
of carbon, 40 
GC-MS abundance of, 58, 58 
rate constant vs. retention index for, 41, 41 
representative, 38 

n-decane, 39 
n-dodecane, 39 
nimesulide, inclusion complex stability of, 113 
n-octane, 40 
non-targeted chemometric methods, 149, 165 
n-tetradecane, 39 
nuclear magnetic resonance (NMR) spectroscopy, 

111 
null distribution analysis, 173 
n-undecane, 61 

O 

olanzapine, 135, 135 
impurity, 133 
inclusion complexes, 132–133 
retention factors of, 128 

olefns, 170–171 
one-dimensional (1D) chromatography 

instrumental and statistical limitations of, 146 
instruments, 146 
use of, 145–146 

One Factor At a Time (OFAT) approach, 120 
optimal clustering solution, 171 
organic modifer, lowest content of, 112 
orthogonality constraints, 162 
orthogonal projection approach (OPA), 157 
ovalbumin, HIC elution of, 22 

P 

PARAFAC, see parallel factor analysis 
(PARAFAC) 

parallel factor analysis (PARAFAC), 149, 155, 
159–165, 162, 164, 174 

accuracy and reproducibility, 163, 165 
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decomposition of metabolites, 164 
identifcation and quantitation, 163 
loadings matrices, 162 
model, 163 
for target analytes, 161 
trimethylsilylated (TMS) vanillic acid, 162, 

162 
two-component model, 161, 161 

partial least squares-discriminant analysis 
(PLS-DA), 149, 171, 178–179, 180–181 

chromatographic data, 178 
classifcation model, 179 
decomposition of cyclohexyl benzene, 182 
LC × LC-QTOF-MS chromatograms, 180 
model development, 178–179 
prediction success of, 179 
validation and optimization methods, 179 

partial least squares regression (PLSR), 121, 125, 
149, 171, 174–178, 176, 178 

development of, 177 
models, 179 
primary outcome of, 177 
regression analysis, 176, 177, 178 

partitional clustering analysis, 170–171 
PCA, see principal components analysis (PCA) 
PCR, see principal component regression (PCR) 
peak capacity, 146 
peak deformation, 152 
Pearson product-moment correlation (PPMC) 

coeffcients, 57–62, 62, 65, 69–70, 74–75, 
80, 84–85, 87, 91 

distribution of, 61 
experimental to predicted chromatograms, 74 
for kerosene and marine fuel stabilizer, 61 

petroleum 
fuels, 63–64 
and petroleum products, 49 

phenytoin in wastewater samples, 163, 165 
pH retention behavior, 133 
PLS-DA, see partial least squares-discriminant 

analysis (PLS-DA) 
PLS regression, see partial least squares (PLS) 

regression 
positive cooperative adsorption, 8 
PPMC coeffcients, see Pearson product-moment 

correlation (PPMC) coeffcients 
practical environmental applications, 51 
predicted chromatograms, 57, 68–69, 71, 71, 85 
predicted fraction remaining, 52 
predicted reference collection, 77, 78 

application of, 84 
generation and application of, 75–81, 76, 77, 

77–79, 81 
principal component regression (PCR), 125 
principal components analysis (PCA), 149, 

165–167 
chemometric technique, 166–167 

decomposition model, 165–166 
defnition of, 165 
normalization techniques, 166 
results of crude oil samples, 168 
sources of variance, 166 

protein 
adsorption properties of, 9 
band profles, 25 
binding, 2, 17 
biological activity of, 3 
chromatography, dynamics of, 3 
concentration, 15–16 
conformational changes of, 9 
crystallization, 22–23 
isotherm courses for, 15–16, 16 
load, effect of, 14, 14 
retention properties of, 9 

protein behavior 
adsorption kinetics, model of, 7–8 
cluster formation, 5–7 
complexity of, 2 
detection of phenomenon, 3–4 
mechanistic models, 4–5 
thermodynamic dependencies, 8–9 
unfolding models, 5, 6 

pseudo-homogeneous models, 9 
pyrolysis, 65 

Q 

QSRR modeling, see quantitative structure 
retention relationship (QSRR) modeling 

quadrupole-time-of-fight MS (QTOF-MS), 153 
quantitative structure-biological activity 

relationships (QSARs) models 
experimental parameters, 127 
for prediction of stability constant, 126 

quantitative structure retention relationship 
(QSRR) modeling, 100–102, 116–119; see 
also cyclodextrin (CD) 

in b-CD modifed RP-HPLC, 122–124 
construction, 124 
development of, 123, 127 
experimental parameters, selection of, 

120–121 
mathematical modeling, 100 
model building, techniques for, 120–122 
molecular descriptor selection, 119–120 
property assessment of CD, formed inclusion 

complexes, 103–110 
in retention prediction and evaluation, 102 
in silico methods, 102 

R 

rate constant 
defnition of, 44 
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natural logarithm of, 41, 41 
receiving operator characteristic (ROC) curves, 173 
reference collection comparison, 65 
reference liquids, chromatograms of, 65 
reference spectra, 159 
regions of interest (ROIs), 154 
regression parameters, 42 
remediation strategies, environmental impact and 

evaluation of, 56 
representative chromatograms, 69 

of gasolines, 70 
of unevaporated liquids, 72–73 

resolution values, 127 
response surface plots, 127–128 
retention behavior, 118, 133 
retention factor, 127 
retention index, 42, 47 

function of, 46 
range, 46 

retention pattern, 12 
retention time alignment programs, 154 
reversed-phase mode (RP-HPLC), 100 

CD-modifed, 101, 110 
thermodynamic parameters in, 113–114 

rigid glucopyranosyl units, 106 
rigid structure, concept of, 106 
risperidone, 134 

retention factor of, 132 
stoichiometry of, 116, 117 

RMESCV, see root-mean-square error of cross-
validation (RMESCV) 

RMSE, see root mean square error (RMSE) 
robust separation process, 2 
ROIs, see regions of interest (ROIs) 
root mean square error (RMSE), 121–122 
root-mean-square error of cross-validation 

(RMESCV), 177 
rotational ambiguity, 157 

S 

salt concentration, 2 
salt-free loading buffer, 23 
salt-free solution, 21 
sample 

centroids, 170 
classifcation, a priori knowledge of, 165 
components of, 146 

sample-solvent effects, 22 
Savitzky-Golay flter, 153–154 
Scatchard plots, 17, 17 
selectivity ratio (SR), 179 
separation techniques, 111 
silanol groups, 114 
silhouette index, 170 
simple-to-use self-modeling analysis 

(SIMPLISMA), 157 

SIMPLISMA, see simple-to-use self-modeling 
analysis (SIMPLISMA) 

single chromatograms, 156 
SLE, see solid-liquid equilibrium (SLE) 
smoothing methods, 153–154 
solid-liquid equilibrium (SLE), 22 
solid-liquid interface, 3 
solubility limitations 

in-column precipitation, risk of, 22–23 
problem, 22, 23 
sample solvent effect, 21–23 

spill remediation, 49 
SR, see selectivity ratio (SR) 
standard molar enthalpy, 114 
standard molar entropy, 114 
stationary phase assisted modulation (SPAM), 

153 
statistical overlap theory, 146 
structural descriptors, 119 
substituted benzenes, 74 
sub-validation methods, 177 
supercritical fuid chromatography (SFC), 103 
supervised analysis techniques, 171 
supervised approaches, 165 
supervised, non-targeted analysis, 171 

F-ratio analysis, 171–174, 175 
partial least squares-discriminant analysis 

(PLS-DA), 178–179, 180–181 
partial least squares (PLS) regression, 

174–178, 176, 178 
support vector machine regression (SVMR), 125 
support vector regression (SVR) aid, 121–122 
synthetic derivatives, 102–103 

T 

TAG isomers, see triacylglycerol (TAG) isomers 
targeted analysis, 148–149, 154–155 

multivariate curve resolution-alternating least 
squares (MCR-ALS), 155–159, 156, 158, 
160 

parallel factor analysis (PARAFAC), 
159–165, 162, 164 

targeted chemometric methods, 165 
TDR, see trilinearity deviation ratio (TDR) 
temperature distribution, 24–25 
temperature-mediated separations, 24 
temperature profle of evaporation experiment, 

51, 52 
thermal degradation, 65 
thermal modulation, 151 
TICs, see total ion chromatograms (TICs) 
time-of-fight mass spectrometry (TOFMS), 152 
TOC, see total organic carbon (TOC) 
TOPS-MODE descriptors, 125 
total area normalization, 154 
total fraction remaining, 49–51, 54, 56, 63 
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comparison to models, 55–56, 56 
of diesel fuel, 49–53, 50–52, 53, 63, 63 
fxed-temperature model, 50 
kerosene and marine fuel stabilizer, 53–54, 

54–55 
total ion chromatograms (TICs), 65, 82, 82, 94 

of burned carpet, 84–85, 85–86 
chromatogram, 177, 178 
identifcation of liquid, 89–90 
predicted reference collection of, 81–82 
reference collections, 84 
of unburned wood fooring sample, 89–90, 

89–94 
total ion current (TIC) chromatogram, 159 
total organic carbon (TOC), 112 
total protein adsorption, adsorption mechanisms 

to, 18 
TOYOPEARL Butyl-650C (TP), 15 
TP resin, 18, 21 
trans-resveratrol:b-CD inclusion complex, 112 
triacylglycerol (TAG) isomers, 159 
trilinear decomposition, 162 
trilinearity constraint, 157 
trilinearity deviation ratio (TDR), 163 
trimethylsilylated (TMS) vanillic acid, 162, 162, 

163 
two-dimensional (2D) chromatography 

development of comprehensive, 146–147 
dimensionalities for, 150 

U 

ultraviolet-visible (UV) detectors, 153 
unevaporated liquids, 70 

unfolded protein, desorption rate of, 4–5 
unimodality constraints, 162 
univariate detection, 155 
univariate detectors, 148, 159 
unsupervised, non-targeted analysis, 165 

hierarchical cluster analysis (HCA), 167–170, 
168–170 

partitional clustering analysis, 170–171 
principal components analysis (PCA), 

165–167 
UV/Vis spectroscopy, 134, 134–135 

V 

van der Waals interactions, 108, 111, 125–126, 
135 

Van’t Hoff plot, 115 
variable importance in projection (VIP), 179 
variable-temperature models, 44–45, 45, 51, 

54–55, 59, 64 
Venetian blinds, 177 
VIP, see variable importance in projection 

(VIP) 
visual inspection, 157, 167 
volatile substances, 102 

W 

Ward’s method, 167 
weathering processes, 49 

X 

X-ray crystallography, 102 
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